| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > algcvg | Structured version Visualization version GIF version | ||
| Description: One way to prove that an
algorithm halts is to construct a countdown
function 𝐶:𝑆⟶ℕ0 whose
value is guaranteed to decrease for
each iteration of 𝐹 until it reaches 0. That is, if 𝑋 ∈ 𝑆
is not a fixed point of 𝐹, then
(𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋).
If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅‘𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| algcvg.1 | ⊢ 𝐹:𝑆⟶𝑆 |
| algcvg.2 | ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) |
| algcvg.3 | ⊢ 𝐶:𝑆⟶ℕ0 |
| algcvg.4 | ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
| algcvg.5 | ⊢ 𝑁 = (𝐶‘𝐴) |
| Ref | Expression |
|---|---|
| algcvg | ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12795 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | algcvg.2 | . . . 4 ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) | |
| 3 | 0zd 12501 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) | |
| 4 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) | |
| 5 | algcvg.1 | . . . . 5 ⊢ 𝐹:𝑆⟶𝑆 | |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
| 7 | 1, 2, 3, 4, 6 | algrf 16502 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
| 8 | algcvg.5 | . . . 4 ⊢ 𝑁 = (𝐶‘𝐴) | |
| 9 | algcvg.3 | . . . . 5 ⊢ 𝐶:𝑆⟶ℕ0 | |
| 10 | 9 | ffvelcdmi 7021 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈ ℕ0) |
| 11 | 8, 10 | eqeltrid 2832 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0) |
| 12 | fvco3 6926 | . . 3 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑁 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) | |
| 13 | 7, 11, 12 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) |
| 14 | fco 6680 | . . . 4 ⊢ ((𝐶:𝑆⟶ℕ0 ∧ 𝑅:ℕ0⟶𝑆) → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) | |
| 15 | 9, 7, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) |
| 16 | 0nn0 12417 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
| 17 | fvco3 6926 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 0 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) | |
| 18 | 7, 16, 17 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) |
| 19 | 1, 2, 3, 4 | algr0 16501 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → (𝑅‘0) = 𝐴) |
| 20 | 19 | fveq2d 6830 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘0)) = (𝐶‘𝐴)) |
| 21 | 18, 20 | eqtrd 2764 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘𝐴)) |
| 22 | 8, 21 | eqtr4id 2783 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 = ((𝐶 ∘ 𝑅)‘0)) |
| 23 | 7 | ffvelcdmda 7022 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
| 24 | 2fveq3 6831 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘(𝐹‘𝑧)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) | |
| 25 | 24 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
| 26 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘𝑧) = (𝐶‘(𝑅‘𝑘))) | |
| 27 | 24, 26 | breq12d 5108 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 28 | 25, 27 | imbi12d 344 | . . . . . 6 ⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))))) |
| 29 | algcvg.4 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) | |
| 30 | 28, 29 | vtoclga 3534 | . . . . 5 ⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 31 | 23, 30 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 32 | peano2nn0 12442 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0) | |
| 33 | fvco3 6926 | . . . . . . 7 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) | |
| 34 | 7, 32, 33 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
| 35 | 1, 2, 3, 4, 6 | algrp1 16503 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
| 36 | 35 | fveq2d 6830 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
| 37 | 34, 36 | eqtrd 2764 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
| 38 | 37 | neeq1d 2984 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
| 39 | fvco3 6926 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) | |
| 40 | 7, 39 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) |
| 41 | 37, 40 | breq12d 5108 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
| 42 | 31, 38, 41 | 3imtr4d 294 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘))) |
| 43 | 15, 22, 42 | nn0seqcvgd 16499 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = 0) |
| 44 | 13, 43 | eqtr3d 2766 | 1 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {csn 4579 class class class wbr 5095 × cxp 5621 ∘ ccom 5627 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 1st c1st 7929 0cc0 11028 1c1 11029 + caddc 11031 < clt 11168 ℕ0cn0 12402 seqcseq 13926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-seq 13927 |
| This theorem is referenced by: algcvga 16508 |
| Copyright terms: Public domain | W3C validator |