MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  algcvg Structured version   Visualization version   GIF version

Theorem algcvg 16489
Description: One way to prove that an algorithm halts is to construct a countdown function 𝐶:𝑆⟶ℕ0 whose value is guaranteed to decrease for each iteration of 𝐹 until it reaches 0. That is, if 𝑋𝑆 is not a fixed point of 𝐹, then (𝐶‘(𝐹𝑋)) < (𝐶𝑋).

If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.)

Hypotheses
Ref Expression
algcvg.1 𝐹:𝑆𝑆
algcvg.2 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
algcvg.3 𝐶:𝑆⟶ℕ0
algcvg.4 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
algcvg.5 𝑁 = (𝐶𝐴)
Assertion
Ref Expression
algcvg (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Distinct variable groups:   𝑧,𝐶   𝑧,𝐹   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝐴(𝑧)   𝑁(𝑧)

Proof of Theorem algcvg
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 nn0uz 12776 . . . 4 0 = (ℤ‘0)
2 algcvg.2 . . . 4 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
3 0zd 12487 . . . 4 (𝐴𝑆 → 0 ∈ ℤ)
4 id 22 . . . 4 (𝐴𝑆𝐴𝑆)
5 algcvg.1 . . . . 5 𝐹:𝑆𝑆
65a1i 11 . . . 4 (𝐴𝑆𝐹:𝑆𝑆)
71, 2, 3, 4, 6algrf 16486 . . 3 (𝐴𝑆𝑅:ℕ0𝑆)
8 algcvg.5 . . . 4 𝑁 = (𝐶𝐴)
9 algcvg.3 . . . . 5 𝐶:𝑆⟶ℕ0
109ffvelcdmi 7022 . . . 4 (𝐴𝑆 → (𝐶𝐴) ∈ ℕ0)
118, 10eqeltrid 2837 . . 3 (𝐴𝑆𝑁 ∈ ℕ0)
12 fvco3 6927 . . 3 ((𝑅:ℕ0𝑆𝑁 ∈ ℕ0) → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
137, 11, 12syl2anc 584 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = (𝐶‘(𝑅𝑁)))
14 fco 6680 . . . 4 ((𝐶:𝑆⟶ℕ0𝑅:ℕ0𝑆) → (𝐶𝑅):ℕ0⟶ℕ0)
159, 7, 14sylancr 587 . . 3 (𝐴𝑆 → (𝐶𝑅):ℕ0⟶ℕ0)
16 0nn0 12403 . . . . . 6 0 ∈ ℕ0
17 fvco3 6927 . . . . . 6 ((𝑅:ℕ0𝑆 ∧ 0 ∈ ℕ0) → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
187, 16, 17sylancl 586 . . . . 5 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶‘(𝑅‘0)))
191, 2, 3, 4algr0 16485 . . . . . 6 (𝐴𝑆 → (𝑅‘0) = 𝐴)
2019fveq2d 6832 . . . . 5 (𝐴𝑆 → (𝐶‘(𝑅‘0)) = (𝐶𝐴))
2118, 20eqtrd 2768 . . . 4 (𝐴𝑆 → ((𝐶𝑅)‘0) = (𝐶𝐴))
228, 21eqtr4id 2787 . . 3 (𝐴𝑆𝑁 = ((𝐶𝑅)‘0))
237ffvelcdmda 7023 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 6833 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶‘(𝐹𝑧)) = (𝐶‘(𝐹‘(𝑅𝑘))))
2524neeq1d 2988 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
26 fveq2 6828 . . . . . . . 8 (𝑧 = (𝑅𝑘) → (𝐶𝑧) = (𝐶‘(𝑅𝑘)))
2724, 26breq12d 5106 . . . . . . 7 (𝑧 = (𝑅𝑘) → ((𝐶‘(𝐹𝑧)) < (𝐶𝑧) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
2825, 27imbi12d 344 . . . . . 6 (𝑧 = (𝑅𝑘) → (((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘)))))
29 algcvg.4 . . . . . 6 (𝑧𝑆 → ((𝐶‘(𝐹𝑧)) ≠ 0 → (𝐶‘(𝐹𝑧)) < (𝐶𝑧)))
3028, 29vtoclga 3529 . . . . 5 ((𝑅𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
3123, 30syl 17 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
32 peano2nn0 12428 . . . . . . 7 (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0)
33 fvco3 6927 . . . . . . 7 ((𝑅:ℕ0𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
347, 32, 33syl2an 596 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1))))
351, 2, 3, 4, 6algrp1 16487 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
3635fveq2d 6832 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅𝑘))))
3734, 36eqtrd 2768 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅𝑘))))
3837neeq1d 2988 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅𝑘))) ≠ 0))
39 fvco3 6927 . . . . . 6 ((𝑅:ℕ0𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
407, 39sylan 580 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐶𝑅)‘𝑘) = (𝐶‘(𝑅𝑘)))
4137, 40breq12d 5106 . . . 4 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅𝑘))) < (𝐶‘(𝑅𝑘))))
4231, 38, 413imtr4d 294 . . 3 ((𝐴𝑆𝑘 ∈ ℕ0) → (((𝐶𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶𝑅)‘(𝑘 + 1)) < ((𝐶𝑅)‘𝑘)))
4315, 22, 42nn0seqcvgd 16483 . 2 (𝐴𝑆 → ((𝐶𝑅)‘𝑁) = 0)
4413, 43eqtr3d 2770 1 (𝐴𝑆 → (𝐶‘(𝑅𝑁)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  {csn 4575   class class class wbr 5093   × cxp 5617  ccom 5623  wf 6482  cfv 6486  (class class class)co 7352  1st c1st 7925  0cc0 11013  1c1 11014   + caddc 11016   < clt 11153  0cn0 12388  seqcseq 13910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-fz 13410  df-seq 13911
This theorem is referenced by:  algcvga  16492
  Copyright terms: Public domain W3C validator