Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > algcvg | Structured version Visualization version GIF version |
Description: One way to prove that an
algorithm halts is to construct a countdown
function 𝐶:𝑆⟶ℕ0 whose
value is guaranteed to decrease for
each iteration of 𝐹 until it reaches 0. That is, if 𝑋 ∈ 𝑆
is not a fixed point of 𝐹, then
(𝐶‘(𝐹‘𝑋)) < (𝐶‘𝑋).
If 𝐶 is a countdown function for algorithm 𝐹, the sequence (𝐶‘(𝑅‘𝑘)) reaches 0 after at most 𝑁 steps, where 𝑁 is the value of 𝐶 for the initial state 𝐴. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
algcvg.1 | ⊢ 𝐹:𝑆⟶𝑆 |
algcvg.2 | ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) |
algcvg.3 | ⊢ 𝐶:𝑆⟶ℕ0 |
algcvg.4 | ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) |
algcvg.5 | ⊢ 𝑁 = (𝐶‘𝐴) |
Ref | Expression |
---|---|
algcvg | ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0uz 12620 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
2 | algcvg.2 | . . . 4 ⊢ 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴})) | |
3 | 0zd 12331 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) | |
4 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) | |
5 | algcvg.1 | . . . . 5 ⊢ 𝐹:𝑆⟶𝑆 | |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
7 | 1, 2, 3, 4, 6 | algrf 16278 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
8 | algcvg.5 | . . . 4 ⊢ 𝑁 = (𝐶‘𝐴) | |
9 | algcvg.3 | . . . . 5 ⊢ 𝐶:𝑆⟶ℕ0 | |
10 | 9 | ffvelrni 6960 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘𝐴) ∈ ℕ0) |
11 | 8, 10 | eqeltrid 2843 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 ∈ ℕ0) |
12 | fvco3 6867 | . . 3 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑁 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) | |
13 | 7, 11, 12 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = (𝐶‘(𝑅‘𝑁))) |
14 | fco 6624 | . . . 4 ⊢ ((𝐶:𝑆⟶ℕ0 ∧ 𝑅:ℕ0⟶𝑆) → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) | |
15 | 9, 7, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ 𝑆 → (𝐶 ∘ 𝑅):ℕ0⟶ℕ0) |
16 | 0nn0 12248 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
17 | fvco3 6867 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 0 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) | |
18 | 7, 16, 17 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘(𝑅‘0))) |
19 | 1, 2, 3, 4 | algr0 16277 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → (𝑅‘0) = 𝐴) |
20 | 19 | fveq2d 6778 | . . . . 5 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘0)) = (𝐶‘𝐴)) |
21 | 18, 20 | eqtrd 2778 | . . . 4 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘0) = (𝐶‘𝐴)) |
22 | 8, 21 | eqtr4id 2797 | . . 3 ⊢ (𝐴 ∈ 𝑆 → 𝑁 = ((𝐶 ∘ 𝑅)‘0)) |
23 | 7 | ffvelrnda 6961 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
24 | 2fveq3 6779 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘(𝐹‘𝑧)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) | |
25 | 24 | neeq1d 3003 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
26 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑧 = (𝑅‘𝑘) → (𝐶‘𝑧) = (𝐶‘(𝑅‘𝑘))) | |
27 | 24, 26 | breq12d 5087 | . . . . . . 7 ⊢ (𝑧 = (𝑅‘𝑘) → ((𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
28 | 25, 27 | imbi12d 345 | . . . . . 6 ⊢ (𝑧 = (𝑅‘𝑘) → (((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧)) ↔ ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘))))) |
29 | algcvg.4 | . . . . . 6 ⊢ (𝑧 ∈ 𝑆 → ((𝐶‘(𝐹‘𝑧)) ≠ 0 → (𝐶‘(𝐹‘𝑧)) < (𝐶‘𝑧))) | |
30 | 28, 29 | vtoclga 3513 | . . . . 5 ⊢ ((𝑅‘𝑘) ∈ 𝑆 → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
31 | 23, 30 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0 → (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
32 | peano2nn0 12273 | . . . . . . 7 ⊢ (𝑘 ∈ ℕ0 → (𝑘 + 1) ∈ ℕ0) | |
33 | fvco3 6867 | . . . . . . 7 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ (𝑘 + 1) ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) | |
34 | 7, 32, 33 | syl2an 596 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝑅‘(𝑘 + 1)))) |
35 | 1, 2, 3, 4, 6 | algrp1 16279 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
36 | 35 | fveq2d 6778 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐶‘(𝑅‘(𝑘 + 1))) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
37 | 34, 36 | eqtrd 2778 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) = (𝐶‘(𝐹‘(𝑅‘𝑘)))) |
38 | 37 | neeq1d 3003 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) ≠ 0)) |
39 | fvco3 6867 | . . . . . 6 ⊢ ((𝑅:ℕ0⟶𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) | |
40 | 7, 39 | sylan 580 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐶 ∘ 𝑅)‘𝑘) = (𝐶‘(𝑅‘𝑘))) |
41 | 37, 40 | breq12d 5087 | . . . 4 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘) ↔ (𝐶‘(𝐹‘(𝑅‘𝑘))) < (𝐶‘(𝑅‘𝑘)))) |
42 | 31, 38, 41 | 3imtr4d 294 | . . 3 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (((𝐶 ∘ 𝑅)‘(𝑘 + 1)) ≠ 0 → ((𝐶 ∘ 𝑅)‘(𝑘 + 1)) < ((𝐶 ∘ 𝑅)‘𝑘))) |
43 | 15, 22, 42 | nn0seqcvgd 16275 | . 2 ⊢ (𝐴 ∈ 𝑆 → ((𝐶 ∘ 𝑅)‘𝑁) = 0) |
44 | 13, 43 | eqtr3d 2780 | 1 ⊢ (𝐴 ∈ 𝑆 → (𝐶‘(𝑅‘𝑁)) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {csn 4561 class class class wbr 5074 × cxp 5587 ∘ ccom 5593 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 0cc0 10871 1c1 10872 + caddc 10874 < clt 11009 ℕ0cn0 12233 seqcseq 13721 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-seq 13722 |
This theorem is referenced by: algcvga 16284 |
Copyright terms: Public domain | W3C validator |