Step | Hyp | Ref
| Expression |
1 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑧 = 0 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) |
2 | 1 | eqeq1d 2740 |
. . . 4
⊢ (𝑧 = 0 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))) |
3 | 2 | imbi2d 341 |
. . 3
⊢ (𝑧 = 0 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))) |
4 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑧 = 𝑘 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝑘))) |
5 | 4 | eqeq1d 2740 |
. . . 4
⊢ (𝑧 = 𝑘 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) |
6 | 5 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝑘 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))))) |
7 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1)))) |
8 | 7 | eqeq1d 2740 |
. . . 4
⊢ (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) |
9 | 8 | imbi2d 341 |
. . 3
⊢ (𝑧 = (𝑘 + 1) → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
10 | | 2fveq3 6779 |
. . . . 5
⊢ (𝑧 = 𝐾 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘𝐾))) |
11 | 10 | eqeq1d 2740 |
. . . 4
⊢ (𝑧 = 𝐾 → ((𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) |
12 | 11 | imbi2d 341 |
. . 3
⊢ (𝑧 = 𝐾 → ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))))) |
13 | | eqidd 2739 |
. . 3
⊢ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))) |
14 | | nn0uz 12620 |
. . . . . . . . . 10
⊢
ℕ0 = (ℤ≥‘0) |
15 | | alginv.1 |
. . . . . . . . . 10
⊢ 𝑅 = seq0((𝐹 ∘ 1st ),
(ℕ0 × {𝐴})) |
16 | | 0zd 12331 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 0 ∈ ℤ) |
17 | | id 22 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐴 ∈ 𝑆) |
18 | | alginv.2 |
. . . . . . . . . . 11
⊢ 𝐹:𝑆⟶𝑆 |
19 | 18 | a1i 11 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝐹:𝑆⟶𝑆) |
20 | 14, 15, 16, 17, 19 | algrp1 16279 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅‘𝑘))) |
21 | 20 | fveq2d 6778 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) |
22 | 14, 15, 16, 17, 19 | algrf 16278 |
. . . . . . . . . 10
⊢ (𝐴 ∈ 𝑆 → 𝑅:ℕ0⟶𝑆) |
23 | 22 | ffvelrnda 6961 |
. . . . . . . . 9
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝑅‘𝑘) ∈ 𝑆) |
24 | | 2fveq3 6779 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘(𝐹‘𝑥)) = (𝐼‘(𝐹‘(𝑅‘𝑘)))) |
25 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑥 = (𝑅‘𝑘) → (𝐼‘𝑥) = (𝐼‘(𝑅‘𝑘))) |
26 | 24, 25 | eqeq12d 2754 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑅‘𝑘) → ((𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥) ↔ (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘)))) |
27 | | alginv.3 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝑆 → (𝐼‘(𝐹‘𝑥)) = (𝐼‘𝑥)) |
28 | 26, 27 | vtoclga 3513 |
. . . . . . . . 9
⊢ ((𝑅‘𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) |
29 | 23, 28 | syl 17 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅‘𝑘))) = (𝐼‘(𝑅‘𝑘))) |
30 | 21, 29 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘𝑘))) |
31 | 30 | eqeq1d 2740 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)))) |
32 | 31 | biimprd 247 |
. . . . 5
⊢ ((𝐴 ∈ 𝑆 ∧ 𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))) |
33 | 32 | expcom 414 |
. . . 4
⊢ (𝑘 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → ((𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
34 | 33 | a2d 29 |
. . 3
⊢ (𝑘 ∈ ℕ0
→ ((𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))) |
35 | 3, 6, 9, 12, 13, 34 | nn0ind 12415 |
. 2
⊢ (𝐾 ∈ ℕ0
→ (𝐴 ∈ 𝑆 → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0)))) |
36 | 35 | impcom 408 |
1
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐾 ∈ ℕ0) → (𝐼‘(𝑅‘𝐾)) = (𝐼‘(𝑅‘0))) |