MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alginv Structured version   Visualization version   GIF version

Theorem alginv 16549
Description: If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
alginv.2 𝐹:𝑆𝑆
alginv.3 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
Assertion
Ref Expression
alginv ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐾(𝑥)

Proof of Theorem alginv
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6901 . . . . 5 (𝑧 = 0 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)))
21eqeq1d 2727 . . . 4 (𝑧 = 0 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))
32imbi2d 339 . . 3 (𝑧 = 0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))))
4 2fveq3 6901 . . . . 5 (𝑧 = 𝑘 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝑘)))
54eqeq1d 2727 . . . 4 (𝑧 = 𝑘 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
65imbi2d 339 . . 3 (𝑧 = 𝑘 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)))))
7 2fveq3 6901 . . . . 5 (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1))))
87eqeq1d 2727 . . . 4 (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
98imbi2d 339 . . 3 (𝑧 = (𝑘 + 1) → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
10 2fveq3 6901 . . . . 5 (𝑧 = 𝐾 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝐾)))
1110eqeq1d 2727 . . . 4 (𝑧 = 𝐾 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
1211imbi2d 339 . . 3 (𝑧 = 𝐾 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))))
13 eqidd 2726 . . 3 (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))
14 nn0uz 12897 . . . . . . . . . 10 0 = (ℤ‘0)
15 alginv.1 . . . . . . . . . 10 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
16 0zd 12603 . . . . . . . . . 10 (𝐴𝑆 → 0 ∈ ℤ)
17 id 22 . . . . . . . . . 10 (𝐴𝑆𝐴𝑆)
18 alginv.2 . . . . . . . . . . 11 𝐹:𝑆𝑆
1918a1i 11 . . . . . . . . . 10 (𝐴𝑆𝐹:𝑆𝑆)
2014, 15, 16, 17, 19algrp1 16548 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
2120fveq2d 6900 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅𝑘))))
2214, 15, 16, 17, 19algrf 16547 . . . . . . . . . 10 (𝐴𝑆𝑅:ℕ0𝑆)
2322ffvelcdmda 7093 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 6901 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹‘(𝑅𝑘))))
25 fveq2 6896 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼𝑥) = (𝐼‘(𝑅𝑘)))
2624, 25eqeq12d 2741 . . . . . . . . . 10 (𝑥 = (𝑅𝑘) → ((𝐼‘(𝐹𝑥)) = (𝐼𝑥) ↔ (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘))))
27 alginv.3 . . . . . . . . . 10 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
2826, 27vtoclga 3556 . . . . . . . . 9 ((𝑅𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
2923, 28syl 17 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3021, 29eqtrd 2765 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅𝑘)))
3130eqeq1d 2727 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
3231biimprd 247 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
3332expcom 412 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑆 → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
3433a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
353, 6, 9, 12, 13, 34nn0ind 12690 . 2 (𝐾 ∈ ℕ0 → (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
3635impcom 406 1 ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {csn 4630   × cxp 5676  ccom 5682  wf 6545  cfv 6549  (class class class)co 7419  1st c1st 7992  0cc0 11140  1c1 11141   + caddc 11143  0cn0 12505  seqcseq 14002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-seq 14003
This theorem is referenced by:  eucalg  16561
  Copyright terms: Public domain W3C validator