MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alginv Structured version   Visualization version   GIF version

Theorem alginv 16280
Description: If 𝐼 is an invariant of 𝐹, then its value is unchanged after any number of iterations of 𝐹. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
alginv.1 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
alginv.2 𝐹:𝑆𝑆
alginv.3 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
Assertion
Ref Expression
alginv ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐼   𝑥,𝑅   𝑥,𝑆
Allowed substitution hints:   𝐴(𝑥)   𝐾(𝑥)

Proof of Theorem alginv
Dummy variables 𝑧 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2fveq3 6779 . . . . 5 (𝑧 = 0 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)))
21eqeq1d 2740 . . . 4 (𝑧 = 0 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0))))
32imbi2d 341 . . 3 (𝑧 = 0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))))
4 2fveq3 6779 . . . . 5 (𝑧 = 𝑘 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝑘)))
54eqeq1d 2740 . . . 4 (𝑧 = 𝑘 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
65imbi2d 341 . . 3 (𝑧 = 𝑘 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)))))
7 2fveq3 6779 . . . . 5 (𝑧 = (𝑘 + 1) → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘(𝑘 + 1))))
87eqeq1d 2740 . . . 4 (𝑧 = (𝑘 + 1) → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
98imbi2d 341 . . 3 (𝑧 = (𝑘 + 1) → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
10 2fveq3 6779 . . . . 5 (𝑧 = 𝐾 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅𝐾)))
1110eqeq1d 2740 . . . 4 (𝑧 = 𝐾 → ((𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
1211imbi2d 341 . . 3 (𝑧 = 𝐾 → ((𝐴𝑆 → (𝐼‘(𝑅𝑧)) = (𝐼‘(𝑅‘0))) ↔ (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))))
13 eqidd 2739 . . 3 (𝐴𝑆 → (𝐼‘(𝑅‘0)) = (𝐼‘(𝑅‘0)))
14 nn0uz 12620 . . . . . . . . . 10 0 = (ℤ‘0)
15 alginv.1 . . . . . . . . . 10 𝑅 = seq0((𝐹 ∘ 1st ), (ℕ0 × {𝐴}))
16 0zd 12331 . . . . . . . . . 10 (𝐴𝑆 → 0 ∈ ℤ)
17 id 22 . . . . . . . . . 10 (𝐴𝑆𝐴𝑆)
18 alginv.2 . . . . . . . . . . 11 𝐹:𝑆𝑆
1918a1i 11 . . . . . . . . . 10 (𝐴𝑆𝐹:𝑆𝑆)
2014, 15, 16, 17, 19algrp1 16279 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅‘(𝑘 + 1)) = (𝐹‘(𝑅𝑘)))
2120fveq2d 6778 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝐹‘(𝑅𝑘))))
2214, 15, 16, 17, 19algrf 16278 . . . . . . . . . 10 (𝐴𝑆𝑅:ℕ0𝑆)
2322ffvelrnda 6961 . . . . . . . . 9 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝑅𝑘) ∈ 𝑆)
24 2fveq3 6779 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼‘(𝐹𝑥)) = (𝐼‘(𝐹‘(𝑅𝑘))))
25 fveq2 6774 . . . . . . . . . . 11 (𝑥 = (𝑅𝑘) → (𝐼𝑥) = (𝐼‘(𝑅𝑘)))
2624, 25eqeq12d 2754 . . . . . . . . . 10 (𝑥 = (𝑅𝑘) → ((𝐼‘(𝐹𝑥)) = (𝐼𝑥) ↔ (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘))))
27 alginv.3 . . . . . . . . . 10 (𝑥𝑆 → (𝐼‘(𝐹𝑥)) = (𝐼𝑥))
2826, 27vtoclga 3513 . . . . . . . . 9 ((𝑅𝑘) ∈ 𝑆 → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
2923, 28syl 17 . . . . . . . 8 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝐹‘(𝑅𝑘))) = (𝐼‘(𝑅𝑘)))
3021, 29eqtrd 2778 . . . . . . 7 ((𝐴𝑆𝑘 ∈ ℕ0) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅𝑘)))
3130eqeq1d 2740 . . . . . 6 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)) ↔ (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))))
3231biimprd 247 . . . . 5 ((𝐴𝑆𝑘 ∈ ℕ0) → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0))))
3332expcom 414 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑆 → ((𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0)) → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
3433a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑆 → (𝐼‘(𝑅𝑘)) = (𝐼‘(𝑅‘0))) → (𝐴𝑆 → (𝐼‘(𝑅‘(𝑘 + 1))) = (𝐼‘(𝑅‘0)))))
353, 6, 9, 12, 13, 34nn0ind 12415 . 2 (𝐾 ∈ ℕ0 → (𝐴𝑆 → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0))))
3635impcom 408 1 ((𝐴𝑆𝐾 ∈ ℕ0) → (𝐼‘(𝑅𝐾)) = (𝐼‘(𝑅‘0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561   × cxp 5587  ccom 5593  wf 6429  cfv 6433  (class class class)co 7275  1st c1st 7829  0cc0 10871  1c1 10872   + caddc 10874  0cn0 12233  seqcseq 13721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-seq 13722
This theorem is referenced by:  eucalg  16292
  Copyright terms: Public domain W3C validator