![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > atandm4 | Structured version Visualization version GIF version |
Description: A compact form of atandm 26937. (Contributed by Mario Carneiro, 3-Apr-2015.) |
Ref | Expression |
---|---|
atandm4 | ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atandm3 26939 | . 2 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1)) | |
2 | sqcl 14168 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝐴↑2) ∈ ℂ) | |
3 | neg1cn 12407 | . . . . . 6 ⊢ -1 ∈ ℂ | |
4 | subeq0 11562 | . . . . . 6 ⊢ (((𝐴↑2) ∈ ℂ ∧ -1 ∈ ℂ) → (((𝐴↑2) − -1) = 0 ↔ (𝐴↑2) = -1)) | |
5 | 2, 3, 4 | sylancl 585 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (((𝐴↑2) − -1) = 0 ↔ (𝐴↑2) = -1)) |
6 | ax-1cn 11242 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
7 | subneg 11585 | . . . . . . . 8 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − -1) = ((𝐴↑2) + 1)) | |
8 | 2, 6, 7 | sylancl 585 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) − -1) = ((𝐴↑2) + 1)) |
9 | addcom 11476 | . . . . . . . 8 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) + 1) = (1 + (𝐴↑2))) | |
10 | 2, 6, 9 | sylancl 585 | . . . . . . 7 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) + 1) = (1 + (𝐴↑2))) |
11 | 8, 10 | eqtrd 2780 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) − -1) = (1 + (𝐴↑2))) |
12 | 11 | eqeq1d 2742 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (((𝐴↑2) − -1) = 0 ↔ (1 + (𝐴↑2)) = 0)) |
13 | 5, 12 | bitr3d 281 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) = -1 ↔ (1 + (𝐴↑2)) = 0)) |
14 | 13 | necon3bid 2991 | . . 3 ⊢ (𝐴 ∈ ℂ → ((𝐴↑2) ≠ -1 ↔ (1 + (𝐴↑2)) ≠ 0)) |
15 | 14 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ (𝐴↑2) ≠ -1) ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) |
16 | 1, 15 | bitri 275 | 1 ⊢ (𝐴 ∈ dom arctan ↔ (𝐴 ∈ ℂ ∧ (1 + (𝐴↑2)) ≠ 0)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 dom cdm 5700 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 + caddc 11187 − cmin 11520 -cneg 11521 2c2 12348 ↑cexp 14112 arctancatan 26925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-exp 14113 df-atan 26928 |
This theorem is referenced by: efiatan2 26978 cosatan 26982 cosatanne0 26983 atansssdm 26994 dvatan 26996 |
Copyright terms: Public domain | W3C validator |