| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > binom2subadd | Structured version Visualization version GIF version | ||
| Description: The difference of the squares of the sum and difference of two complex numbers 𝐴 and 𝐵. (Contributed by Thierry Arnoux, 5-Nov-2025.) |
| Ref | Expression |
|---|---|
| binom2subadd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| binom2subadd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| binom2subadd | ⊢ (𝜑 → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binom2subadd.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | binom2subadd.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | 1, 2 | addcld 11246 | . . . 4 ⊢ (𝜑 → (𝐴 + 𝐵) ∈ ℂ) |
| 4 | 1, 2 | subcld 11586 | . . . 4 ⊢ (𝜑 → (𝐴 − 𝐵) ∈ ℂ) |
| 5 | subsq 14216 | . . . 4 ⊢ (((𝐴 + 𝐵) ∈ ℂ ∧ (𝐴 − 𝐵) ∈ ℂ) → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (((𝐴 + 𝐵) + (𝐴 − 𝐵)) · ((𝐴 + 𝐵) − (𝐴 − 𝐵)))) | |
| 6 | 3, 4, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (((𝐴 + 𝐵) + (𝐴 − 𝐵)) · ((𝐴 + 𝐵) − (𝐴 − 𝐵)))) |
| 7 | 1, 2, 1 | ppncand 11626 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (𝐴 + 𝐴)) |
| 8 | 1 | 2timesd 12476 | . . . . 5 ⊢ (𝜑 → (2 · 𝐴) = (𝐴 + 𝐴)) |
| 9 | 7, 8 | eqtr4d 2772 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐴 − 𝐵)) = (2 · 𝐴)) |
| 10 | 1, 2, 2 | pnncand 11625 | . . . . 5 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (𝐵 + 𝐵)) |
| 11 | 2 | 2timesd 12476 | . . . . 5 ⊢ (𝜑 → (2 · 𝐵) = (𝐵 + 𝐵)) |
| 12 | 10, 11 | eqtr4d 2772 | . . . 4 ⊢ (𝜑 → ((𝐴 + 𝐵) − (𝐴 − 𝐵)) = (2 · 𝐵)) |
| 13 | 9, 12 | oveq12d 7417 | . . 3 ⊢ (𝜑 → (((𝐴 + 𝐵) + (𝐴 − 𝐵)) · ((𝐴 + 𝐵) − (𝐴 − 𝐵))) = ((2 · 𝐴) · (2 · 𝐵))) |
| 14 | 2cnd 12310 | . . . 4 ⊢ (𝜑 → 2 ∈ ℂ) | |
| 15 | 14, 1, 14, 2 | mul4d 11439 | . . 3 ⊢ (𝜑 → ((2 · 𝐴) · (2 · 𝐵)) = ((2 · 2) · (𝐴 · 𝐵))) |
| 16 | 6, 13, 15 | 3eqtrd 2773 | . 2 ⊢ (𝜑 → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = ((2 · 2) · (𝐴 · 𝐵))) |
| 17 | 2t2e4 12396 | . . 3 ⊢ (2 · 2) = 4 | |
| 18 | 17 | oveq1i 7409 | . 2 ⊢ ((2 · 2) · (𝐴 · 𝐵)) = (4 · (𝐴 · 𝐵)) |
| 19 | 16, 18 | eqtrdi 2785 | 1 ⊢ (𝜑 → (((𝐴 + 𝐵)↑2) − ((𝐴 − 𝐵)↑2)) = (4 · (𝐴 · 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 (class class class)co 7399 ℂcc 11119 + caddc 11124 · cmul 11126 − cmin 11458 2c2 12287 4c4 12289 ↑cexp 14068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-2 12295 df-3 12296 df-4 12297 df-n0 12494 df-z 12581 df-uz 12845 df-seq 14009 df-exp 14069 |
| This theorem is referenced by: constrresqrtcl 33727 |
| Copyright terms: Public domain | W3C validator |