MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  declti Structured version   Visualization version   GIF version

Theorem declti 12796
Description: Comparing a digit to a decimal integer. (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.)
Hypotheses
Ref Expression
declti.a 𝐴 ∈ ℕ
declti.b 𝐵 ∈ ℕ0
declti.c 𝐶 ∈ ℕ0
declti.l 𝐶 < 10
Assertion
Ref Expression
declti 𝐶 < 𝐴𝐵

Proof of Theorem declti
StepHypRef Expression
1 10nn 12774 . . 3 10 ∈ ℕ
2 declti.a . . 3 𝐴 ∈ ℕ
3 declti.b . . 3 𝐵 ∈ ℕ0
4 declti.c . . 3 𝐶 ∈ ℕ0
5 declti.l . . 3 𝐶 < 10
61, 2, 3, 4, 5numlti 12795 . 2 𝐶 < ((10 · 𝐴) + 𝐵)
7 dfdec10 12761 . 2 𝐴𝐵 = ((10 · 𝐴) + 𝐵)
86, 7breqtrri 5193 1 𝐶 < 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2108   class class class wbr 5166  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cn 12293  0cn0 12553  cdc 12758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759
This theorem is referenced by:  decltdi  12797  fsumcube  16108  5prm  17156  7prm  17158  11prm  17162  13prm  17163  17prm  17164  19prm  17165  23prm  17166  37prm  17168  43prm  17169  83prm  17170  139prm  17171  163prm  17172  317prm  17173  631prm  17174  1259lem5  17182  2503prm  17187  4001prm  17192  basendxnocndx  17442  basendxltdsndx  17447  dsndxnplusgndx  17449  dsndxnmulrndx  17450  slotsdnscsi  17451  dsndxntsetndx  17452  slotsdifdsndx  17453  basendxltunifndx  17457  unifndxntsetndx  17459  slotsdifunifndx  17460  slotsbhcdif  17474  slotsbhcdifOLD  17475  oppcbasOLD  17778  rescbasOLD  17891  rescabsOLD  17897  catstr  18026  mgpdsOLD  20175  sradsOLD  21215  thlbasOLD  21738  tuslemOLD  24297  setsmsdsOLD  24509  tmslemOLD  24516  tnglemOLD  24675  tngdsOLD  24690  log2le1  27011  bpos1  27345  bposlem9  27354  slotsinbpsd  28467  slotslnbpsd  28468  trkgstr  28470  ttgbasOLD  28906  ttgplusgOLD  28908  ttgvscaOLD  28911  eengstr  29013  basendxltedgfndx  29028  baseltedgfOLD  29029  zlmdsOLD  33909  hgt750lem  34628  257prm  47435  fmtno4prmfac193  47447  fmtno5nprm  47457  139prmALT  47470  127prm  47473  tgblthelfgott  47689
  Copyright terms: Public domain W3C validator