| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv2 | Structured version Visualization version GIF version | ||
| Description: Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cycpm2.c | ⊢ 𝐶 = (toCyc‘𝐷) |
| cycpm2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpm2.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| cycpm2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| cycpm2.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| cycpm2cl.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| Ref | Expression |
|---|---|
| cyc2fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpm2.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | cycpm2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpm2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | cycpm2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 5 | 3, 4 | s2cld 14893 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 6 | cycpm2.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 7 | 3, 4, 6 | s2f1 32876 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| 8 | 2pos 12352 | . . . . 5 ⊢ 0 < 2 | |
| 9 | s2len 14911 | . . . . 5 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 10 | 8, 9 | breqtrri 5152 | . . . 4 ⊢ 0 < (♯‘〈“𝐼𝐽”〉) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0 < (♯‘〈“𝐼𝐽”〉)) |
| 12 | 9 | oveq1i 7424 | . . . . 5 ⊢ ((♯‘〈“𝐼𝐽”〉) − 1) = (2 − 1) |
| 13 | 2m1e1 12375 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 14 | 12, 13 | eqtr2i 2758 | . . . 4 ⊢ 1 = ((♯‘〈“𝐼𝐽”〉) − 1) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 1 = ((♯‘〈“𝐼𝐽”〉) − 1)) |
| 16 | 1, 2, 5, 7, 11, 15 | cycpmfv2 33080 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = (〈“𝐼𝐽”〉‘0)) |
| 17 | s2fv1 14910 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 19 | 18 | fveq2d 6891 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐽)) |
| 20 | s2fv0 14909 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 21 | 3, 20 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 22 | 16, 19, 21 | 3eqtr3d 2777 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 class class class wbr 5125 ‘cfv 6542 (class class class)co 7414 0cc0 11138 1c1 11139 < clt 11278 − cmin 11475 2c2 12304 ♯chash 14352 〈“cs2 14863 SymGrpcsymg 19359 toCycctocyc 33072 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-sup 9465 df-inf 9466 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-rp 13018 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-hash 14353 df-word 14536 df-concat 14592 df-s1 14617 df-substr 14662 df-pfx 14692 df-csh 14810 df-s2 14870 df-tocyc 33073 |
| This theorem is referenced by: cycpmco2 33099 cyc3co2 33106 |
| Copyright terms: Public domain | W3C validator |