![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv2 | Structured version Visualization version GIF version |
Description: Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
Ref | Expression |
---|---|
cycpm2.c | ⊢ 𝐶 = (toCyc‘𝐷) |
cycpm2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
cycpm2.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
cycpm2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
cycpm2.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
cycpm2cl.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
Ref | Expression |
---|---|
cyc2fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cycpm2.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | cycpm2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
3 | cycpm2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
4 | cycpm2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
5 | 3, 4 | s2cld 14866 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
6 | cycpm2.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
7 | 3, 4, 6 | s2f1 32776 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
8 | 2pos 12353 | . . . . 5 ⊢ 0 < 2 | |
9 | s2len 14884 | . . . . 5 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
10 | 8, 9 | breqtrri 5176 | . . . 4 ⊢ 0 < (♯‘〈“𝐼𝐽”〉) |
11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0 < (♯‘〈“𝐼𝐽”〉)) |
12 | 9 | oveq1i 7429 | . . . . 5 ⊢ ((♯‘〈“𝐼𝐽”〉) − 1) = (2 − 1) |
13 | 2m1e1 12376 | . . . . 5 ⊢ (2 − 1) = 1 | |
14 | 12, 13 | eqtr2i 2754 | . . . 4 ⊢ 1 = ((♯‘〈“𝐼𝐽”〉) − 1) |
15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 1 = ((♯‘〈“𝐼𝐽”〉) − 1)) |
16 | 1, 2, 5, 7, 11, 15 | cycpmfv2 32948 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = (〈“𝐼𝐽”〉‘0)) |
17 | s2fv1 14883 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
19 | 18 | fveq2d 6900 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐽)) |
20 | s2fv0 14882 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
21 | 3, 20 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
22 | 16, 19, 21 | 3eqtr3d 2773 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 0cc0 11145 1c1 11146 < clt 11285 − cmin 11481 2c2 12305 ♯chash 14333 〈“cs2 14836 SymGrpcsymg 19350 toCycctocyc 32940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 ax-pre-sup 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9472 df-inf 9473 df-card 9969 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-div 11909 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-rp 13015 df-fz 13525 df-fzo 13668 df-fl 13798 df-mod 13876 df-hash 14334 df-word 14509 df-concat 14565 df-s1 14590 df-substr 14635 df-pfx 14665 df-csh 14783 df-s2 14843 df-tocyc 32941 |
This theorem is referenced by: cycpmco2 32967 cyc3co2 32974 |
Copyright terms: Public domain | W3C validator |