| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cyc2fv2 | Structured version Visualization version GIF version | ||
| Description: Function value of a 2-cycle at the second point. (Contributed by Thierry Arnoux, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| cycpm2.c | ⊢ 𝐶 = (toCyc‘𝐷) |
| cycpm2.d | ⊢ (𝜑 → 𝐷 ∈ 𝑉) |
| cycpm2.i | ⊢ (𝜑 → 𝐼 ∈ 𝐷) |
| cycpm2.j | ⊢ (𝜑 → 𝐽 ∈ 𝐷) |
| cycpm2.1 | ⊢ (𝜑 → 𝐼 ≠ 𝐽) |
| cycpm2cl.s | ⊢ 𝑆 = (SymGrp‘𝐷) |
| Ref | Expression |
|---|---|
| cyc2fv2 | ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cycpm2.c | . . 3 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | cycpm2.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑉) | |
| 3 | cycpm2.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝐷) | |
| 4 | cycpm2.j | . . . 4 ⊢ (𝜑 → 𝐽 ∈ 𝐷) | |
| 5 | 3, 4 | s2cld 14796 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
| 6 | cycpm2.1 | . . . 4 ⊢ (𝜑 → 𝐼 ≠ 𝐽) | |
| 7 | 3, 4, 6 | s2f1 32899 | . . 3 ⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
| 8 | 2pos 12249 | . . . . 5 ⊢ 0 < 2 | |
| 9 | s2len 14814 | . . . . 5 ⊢ (♯‘〈“𝐼𝐽”〉) = 2 | |
| 10 | 8, 9 | breqtrri 5122 | . . . 4 ⊢ 0 < (♯‘〈“𝐼𝐽”〉) |
| 11 | 10 | a1i 11 | . . 3 ⊢ (𝜑 → 0 < (♯‘〈“𝐼𝐽”〉)) |
| 12 | 9 | oveq1i 7363 | . . . . 5 ⊢ ((♯‘〈“𝐼𝐽”〉) − 1) = (2 − 1) |
| 13 | 2m1e1 12267 | . . . . 5 ⊢ (2 − 1) = 1 | |
| 14 | 12, 13 | eqtr2i 2753 | . . . 4 ⊢ 1 = ((♯‘〈“𝐼𝐽”〉) − 1) |
| 15 | 14 | a1i 11 | . . 3 ⊢ (𝜑 → 1 = ((♯‘〈“𝐼𝐽”〉) − 1)) |
| 16 | 1, 2, 5, 7, 11, 15 | cycpmfv2 33069 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = (〈“𝐼𝐽”〉‘0)) |
| 17 | s2fv1 14813 | . . . 4 ⊢ (𝐽 ∈ 𝐷 → (〈“𝐼𝐽”〉‘1) = 𝐽) | |
| 18 | 4, 17 | syl 17 | . . 3 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘1) = 𝐽) |
| 19 | 18 | fveq2d 6830 | . 2 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘(〈“𝐼𝐽”〉‘1)) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐽)) |
| 20 | s2fv0 14812 | . . 3 ⊢ (𝐼 ∈ 𝐷 → (〈“𝐼𝐽”〉‘0) = 𝐼) | |
| 21 | 3, 20 | syl 17 | . 2 ⊢ (𝜑 → (〈“𝐼𝐽”〉‘0) = 𝐼) |
| 22 | 16, 19, 21 | 3eqtr3d 2772 | 1 ⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 < clt 11168 − cmin 11365 2c2 12201 ♯chash 14255 〈“cs2 14766 SymGrpcsymg 19266 toCycctocyc 33061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-inf 9352 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-substr 14566 df-pfx 14596 df-csh 14713 df-s2 14773 df-tocyc 33062 |
| This theorem is referenced by: cycpmco2 33088 cyc3co2 33095 |
| Copyright terms: Public domain | W3C validator |