Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundgt1 Structured version   Visualization version   GIF version

Theorem pellfundgt1 40621
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundgt1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))

Proof of Theorem pellfundgt1
StepHypRef Expression
1 1red 10907 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 eldifi 4057 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
32peano2nnd 11920 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
43nnrpd 12699 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
54rpsqrtcld 15051 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
65rpred 12701 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
72nnrpd 12699 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
87rpsqrtcld 15051 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
98rpred 12701 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
106, 9readdcld 10935 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
11 pellfundre 40619 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
12 sqrt1 14911 . . . . 5 (√‘1) = 1
1312, 1eqeltrid 2843 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ)
1413, 13readdcld 10935 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ)
15 1lt2 12074 . . . . 5 1 < 2
1612, 12oveq12i 7267 . . . . . 6 ((√‘1) + (√‘1)) = (1 + 1)
17 1p1e2 12028 . . . . . 6 (1 + 1) = 2
1816, 17eqtri 2766 . . . . 5 ((√‘1) + (√‘1)) = 2
1915, 18breqtrri 5097 . . . 4 1 < ((√‘1) + (√‘1))
2019a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1)))
213nnge1d 11951 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1))
22 0le1 11428 . . . . . . 7 0 ≤ 1
2322a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1)
242nnred 11918 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ)
25 peano2re 11078 . . . . . . 7 (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ)
2624, 25syl 17 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ)
273nnnn0d 12223 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0)
2827nn0ge0d 12226 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1))
291, 23, 26, 28sqrtled 15066 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1))))
3021, 29mpbid 231 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1)))
312nnge1d 11951 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷)
322nnnn0d 12223 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0)
3332nn0ge0d 12226 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷)
341, 23, 24, 33sqrtled 15066 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷)))
3531, 34mpbid 231 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷))
3613, 13, 6, 9, 30, 35le2addd 11524 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷)))
371, 14, 10, 20, 36ltletrd 11065 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷)))
38 pellfundge 40620 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
391, 10, 11, 37, 38ltletrd 11065 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3880   class class class wbr 5070  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cn 11903  2c2 11958  csqrt 14872  NNcsquarenn 40574  PellFundcpellfund 40578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ico 13014  df-fz 13169  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-gcd 16130  df-numer 16367  df-denom 16368  df-squarenn 40579  df-pell1qr 40580  df-pell14qr 40581  df-pell1234qr 40582  df-pellfund 40583
This theorem is referenced by:  pellfundex  40624  pellfundrp  40626  pellfundne1  40627  pellfund14  40636
  Copyright terms: Public domain W3C validator