Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundgt1 Structured version   Visualization version   GIF version

Theorem pellfundgt1 42839
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundgt1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))

Proof of Theorem pellfundgt1
StepHypRef Expression
1 1red 11291 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 eldifi 4154 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
32peano2nnd 12310 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
43nnrpd 13097 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
54rpsqrtcld 15460 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
65rpred 13099 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
72nnrpd 13097 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
87rpsqrtcld 15460 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
98rpred 13099 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
106, 9readdcld 11319 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
11 pellfundre 42837 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
12 sqrt1 15320 . . . . 5 (√‘1) = 1
1312, 1eqeltrid 2848 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ)
1413, 13readdcld 11319 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ)
15 1lt2 12464 . . . . 5 1 < 2
1612, 12oveq12i 7460 . . . . . 6 ((√‘1) + (√‘1)) = (1 + 1)
17 1p1e2 12418 . . . . . 6 (1 + 1) = 2
1816, 17eqtri 2768 . . . . 5 ((√‘1) + (√‘1)) = 2
1915, 18breqtrri 5193 . . . 4 1 < ((√‘1) + (√‘1))
2019a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1)))
213nnge1d 12341 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1))
22 0le1 11813 . . . . . . 7 0 ≤ 1
2322a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1)
242nnred 12308 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ)
25 peano2re 11463 . . . . . . 7 (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ)
2624, 25syl 17 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ)
273nnnn0d 12613 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0)
2827nn0ge0d 12616 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1))
291, 23, 26, 28sqrtled 15475 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1))))
3021, 29mpbid 232 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1)))
312nnge1d 12341 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷)
322nnnn0d 12613 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0)
3332nn0ge0d 12616 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷)
341, 23, 24, 33sqrtled 15475 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷)))
3531, 34mpbid 232 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷))
3613, 13, 6, 9, 30, 35le2addd 11909 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷)))
371, 14, 10, 20, 36ltletrd 11450 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷)))
38 pellfundge 42838 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
391, 10, 11, 37, 38ltletrd 11450 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  cdif 3973   class class class wbr 5166  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cn 12293  2c2 12348  csqrt 15282  NNcsquarenn 42792  PellFundcpellfund 42796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-ico 13413  df-fz 13568  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-numer 16782  df-denom 16783  df-squarenn 42797  df-pell1qr 42798  df-pell14qr 42799  df-pell1234qr 42800  df-pellfund 42801
This theorem is referenced by:  pellfundex  42842  pellfundrp  42844  pellfundne1  42845  pellfund14  42854
  Copyright terms: Public domain W3C validator