| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version | ||
| Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| Ref | Expression |
|---|---|
| pellfundgt1 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11113 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
| 2 | eldifi 4078 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
| 3 | 2 | peano2nnd 12142 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
| 4 | 3 | nnrpd 12932 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
| 5 | 4 | rpsqrtcld 15319 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
| 6 | 5 | rpred 12934 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
| 7 | 2 | nnrpd 12932 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
| 8 | 7 | rpsqrtcld 15319 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
| 9 | 8 | rpred 12934 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
| 10 | 6, 9 | readdcld 11141 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
| 11 | pellfundre 42984 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
| 12 | sqrt1 15178 | . . . . 5 ⊢ (√‘1) = 1 | |
| 13 | 12, 1 | eqeltrid 2835 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ) |
| 14 | 13, 13 | readdcld 11141 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ) |
| 15 | 1lt2 12291 | . . . . 5 ⊢ 1 < 2 | |
| 16 | 12, 12 | oveq12i 7358 | . . . . . 6 ⊢ ((√‘1) + (√‘1)) = (1 + 1) |
| 17 | 1p1e2 12245 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 18 | 16, 17 | eqtri 2754 | . . . . 5 ⊢ ((√‘1) + (√‘1)) = 2 |
| 19 | 15, 18 | breqtrri 5116 | . . . 4 ⊢ 1 < ((√‘1) + (√‘1)) |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1))) |
| 21 | 3 | nnge1d 12173 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1)) |
| 22 | 0le1 11640 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1) |
| 24 | 2 | nnred 12140 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ) |
| 25 | peano2re 11286 | . . . . . . 7 ⊢ (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ) |
| 27 | 3 | nnnn0d 12442 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0) |
| 28 | 27 | nn0ge0d 12445 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1)) |
| 29 | 1, 23, 26, 28 | sqrtled 15334 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1)))) |
| 30 | 21, 29 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1))) |
| 31 | 2 | nnge1d 12173 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷) |
| 32 | 2 | nnnn0d 12442 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12445 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷) |
| 34 | 1, 23, 24, 33 | sqrtled 15334 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷))) |
| 35 | 31, 34 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷)) |
| 36 | 13, 13, 6, 9, 30, 35 | le2addd 11736 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 37 | 1, 14, 10, 20, 36 | ltletrd 11273 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 38 | pellfundge 42985 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | |
| 39 | 1, 10, 11, 37, 38 | ltletrd 11273 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ∖ cdif 3894 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 < clt 11146 ≤ cle 11147 ℕcn 12125 2c2 12180 √csqrt 15140 ◻NNcsquarenn 42939 PellFundcpellfund 42943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-inf2 9531 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-omul 8390 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-acn 9835 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ico 13251 df-fz 13408 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 df-squarenn 42944 df-pell1qr 42945 df-pell14qr 42946 df-pell1234qr 42947 df-pellfund 42948 |
| This theorem is referenced by: pellfundex 42989 pellfundrp 42991 pellfundne1 42992 pellfund14 43001 |
| Copyright terms: Public domain | W3C validator |