| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version | ||
| Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| Ref | Expression |
|---|---|
| pellfundgt1 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11262 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
| 2 | eldifi 4131 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
| 3 | 2 | peano2nnd 12283 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
| 4 | 3 | nnrpd 13075 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
| 5 | 4 | rpsqrtcld 15450 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
| 6 | 5 | rpred 13077 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
| 7 | 2 | nnrpd 13075 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
| 8 | 7 | rpsqrtcld 15450 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
| 9 | 8 | rpred 13077 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
| 10 | 6, 9 | readdcld 11290 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
| 11 | pellfundre 42892 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
| 12 | sqrt1 15310 | . . . . 5 ⊢ (√‘1) = 1 | |
| 13 | 12, 1 | eqeltrid 2845 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ) |
| 14 | 13, 13 | readdcld 11290 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ) |
| 15 | 1lt2 12437 | . . . . 5 ⊢ 1 < 2 | |
| 16 | 12, 12 | oveq12i 7443 | . . . . . 6 ⊢ ((√‘1) + (√‘1)) = (1 + 1) |
| 17 | 1p1e2 12391 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 18 | 16, 17 | eqtri 2765 | . . . . 5 ⊢ ((√‘1) + (√‘1)) = 2 |
| 19 | 15, 18 | breqtrri 5170 | . . . 4 ⊢ 1 < ((√‘1) + (√‘1)) |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1))) |
| 21 | 3 | nnge1d 12314 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1)) |
| 22 | 0le1 11786 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1) |
| 24 | 2 | nnred 12281 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ) |
| 25 | peano2re 11434 | . . . . . . 7 ⊢ (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ) |
| 27 | 3 | nnnn0d 12587 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0) |
| 28 | 27 | nn0ge0d 12590 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1)) |
| 29 | 1, 23, 26, 28 | sqrtled 15465 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1)))) |
| 30 | 21, 29 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1))) |
| 31 | 2 | nnge1d 12314 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷) |
| 32 | 2 | nnnn0d 12587 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12590 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷) |
| 34 | 1, 23, 24, 33 | sqrtled 15465 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷))) |
| 35 | 31, 34 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷)) |
| 36 | 13, 13, 6, 9, 30, 35 | le2addd 11882 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 37 | 1, 14, 10, 20, 36 | ltletrd 11421 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 38 | pellfundge 42893 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | |
| 39 | 1, 10, 11, 37, 38 | ltletrd 11421 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∖ cdif 3948 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 < clt 11295 ≤ cle 11296 ℕcn 12266 2c2 12321 √csqrt 15272 ◻NNcsquarenn 42847 PellFundcpellfund 42851 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-n0 12527 df-xnn0 12600 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-ico 13393 df-fz 13548 df-fl 13832 df-mod 13910 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-dvds 16291 df-gcd 16532 df-numer 16772 df-denom 16773 df-squarenn 42852 df-pell1qr 42853 df-pell14qr 42854 df-pell1234qr 42855 df-pellfund 42856 |
| This theorem is referenced by: pellfundex 42897 pellfundrp 42899 pellfundne1 42900 pellfund14 42909 |
| Copyright terms: Public domain | W3C validator |