Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundgt1 Structured version   Visualization version   GIF version

Theorem pellfundgt1 42986
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundgt1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))

Proof of Theorem pellfundgt1
StepHypRef Expression
1 1red 11113 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 eldifi 4078 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
32peano2nnd 12142 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
43nnrpd 12932 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
54rpsqrtcld 15319 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
65rpred 12934 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
72nnrpd 12932 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
87rpsqrtcld 15319 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
98rpred 12934 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
106, 9readdcld 11141 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
11 pellfundre 42984 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
12 sqrt1 15178 . . . . 5 (√‘1) = 1
1312, 1eqeltrid 2835 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ)
1413, 13readdcld 11141 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ)
15 1lt2 12291 . . . . 5 1 < 2
1612, 12oveq12i 7358 . . . . . 6 ((√‘1) + (√‘1)) = (1 + 1)
17 1p1e2 12245 . . . . . 6 (1 + 1) = 2
1816, 17eqtri 2754 . . . . 5 ((√‘1) + (√‘1)) = 2
1915, 18breqtrri 5116 . . . 4 1 < ((√‘1) + (√‘1))
2019a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1)))
213nnge1d 12173 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1))
22 0le1 11640 . . . . . . 7 0 ≤ 1
2322a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1)
242nnred 12140 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ)
25 peano2re 11286 . . . . . . 7 (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ)
2624, 25syl 17 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ)
273nnnn0d 12442 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0)
2827nn0ge0d 12445 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1))
291, 23, 26, 28sqrtled 15334 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1))))
3021, 29mpbid 232 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1)))
312nnge1d 12173 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷)
322nnnn0d 12442 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0)
3332nn0ge0d 12445 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷)
341, 23, 24, 33sqrtled 15334 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷)))
3531, 34mpbid 232 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷))
3613, 13, 6, 9, 30, 35le2addd 11736 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷)))
371, 14, 10, 20, 36ltletrd 11273 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷)))
38 pellfundge 42985 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
391, 10, 11, 37, 38ltletrd 11273 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cdif 3894   class class class wbr 5089  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cn 12125  2c2 12180  csqrt 15140  NNcsquarenn 42939  PellFundcpellfund 42943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-ico 13251  df-fz 13408  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647  df-squarenn 42944  df-pell1qr 42945  df-pell14qr 42946  df-pell1234qr 42947  df-pellfund 42948
This theorem is referenced by:  pellfundex  42989  pellfundrp  42991  pellfundne1  42992  pellfund14  43001
  Copyright terms: Public domain W3C validator