![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version |
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
Ref | Expression |
---|---|
pellfundgt1 | β’ (π· β (β β β»NN) β 1 < (PellFundβπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red 11243 | . 2 β’ (π· β (β β β»NN) β 1 β β) | |
2 | eldifi 4119 | . . . . . . 7 β’ (π· β (β β β»NN) β π· β β) | |
3 | 2 | peano2nnd 12257 | . . . . . 6 β’ (π· β (β β β»NN) β (π· + 1) β β) |
4 | 3 | nnrpd 13044 | . . . . 5 β’ (π· β (β β β»NN) β (π· + 1) β β+) |
5 | 4 | rpsqrtcld 15388 | . . . 4 β’ (π· β (β β β»NN) β (ββ(π· + 1)) β β+) |
6 | 5 | rpred 13046 | . . 3 β’ (π· β (β β β»NN) β (ββ(π· + 1)) β β) |
7 | 2 | nnrpd 13044 | . . . . 5 β’ (π· β (β β β»NN) β π· β β+) |
8 | 7 | rpsqrtcld 15388 | . . . 4 β’ (π· β (β β β»NN) β (ββπ·) β β+) |
9 | 8 | rpred 13046 | . . 3 β’ (π· β (β β β»NN) β (ββπ·) β β) |
10 | 6, 9 | readdcld 11271 | . 2 β’ (π· β (β β β»NN) β ((ββ(π· + 1)) + (ββπ·)) β β) |
11 | pellfundre 42365 | . 2 β’ (π· β (β β β»NN) β (PellFundβπ·) β β) | |
12 | sqrt1 15248 | . . . . 5 β’ (ββ1) = 1 | |
13 | 12, 1 | eqeltrid 2829 | . . . 4 β’ (π· β (β β β»NN) β (ββ1) β β) |
14 | 13, 13 | readdcld 11271 | . . 3 β’ (π· β (β β β»NN) β ((ββ1) + (ββ1)) β β) |
15 | 1lt2 12411 | . . . . 5 β’ 1 < 2 | |
16 | 12, 12 | oveq12i 7427 | . . . . . 6 β’ ((ββ1) + (ββ1)) = (1 + 1) |
17 | 1p1e2 12365 | . . . . . 6 β’ (1 + 1) = 2 | |
18 | 16, 17 | eqtri 2753 | . . . . 5 β’ ((ββ1) + (ββ1)) = 2 |
19 | 15, 18 | breqtrri 5170 | . . . 4 β’ 1 < ((ββ1) + (ββ1)) |
20 | 19 | a1i 11 | . . 3 β’ (π· β (β β β»NN) β 1 < ((ββ1) + (ββ1))) |
21 | 3 | nnge1d 12288 | . . . . 5 β’ (π· β (β β β»NN) β 1 β€ (π· + 1)) |
22 | 0le1 11765 | . . . . . . 7 β’ 0 β€ 1 | |
23 | 22 | a1i 11 | . . . . . 6 β’ (π· β (β β β»NN) β 0 β€ 1) |
24 | 2 | nnred 12255 | . . . . . . 7 β’ (π· β (β β β»NN) β π· β β) |
25 | peano2re 11415 | . . . . . . 7 β’ (π· β β β (π· + 1) β β) | |
26 | 24, 25 | syl 17 | . . . . . 6 β’ (π· β (β β β»NN) β (π· + 1) β β) |
27 | 3 | nnnn0d 12560 | . . . . . . 7 β’ (π· β (β β β»NN) β (π· + 1) β β0) |
28 | 27 | nn0ge0d 12563 | . . . . . 6 β’ (π· β (β β β»NN) β 0 β€ (π· + 1)) |
29 | 1, 23, 26, 28 | sqrtled 15403 | . . . . 5 β’ (π· β (β β β»NN) β (1 β€ (π· + 1) β (ββ1) β€ (ββ(π· + 1)))) |
30 | 21, 29 | mpbid 231 | . . . 4 β’ (π· β (β β β»NN) β (ββ1) β€ (ββ(π· + 1))) |
31 | 2 | nnge1d 12288 | . . . . 5 β’ (π· β (β β β»NN) β 1 β€ π·) |
32 | 2 | nnnn0d 12560 | . . . . . . 7 β’ (π· β (β β β»NN) β π· β β0) |
33 | 32 | nn0ge0d 12563 | . . . . . 6 β’ (π· β (β β β»NN) β 0 β€ π·) |
34 | 1, 23, 24, 33 | sqrtled 15403 | . . . . 5 β’ (π· β (β β β»NN) β (1 β€ π· β (ββ1) β€ (ββπ·))) |
35 | 31, 34 | mpbid 231 | . . . 4 β’ (π· β (β β β»NN) β (ββ1) β€ (ββπ·)) |
36 | 13, 13, 6, 9, 30, 35 | le2addd 11861 | . . 3 β’ (π· β (β β β»NN) β ((ββ1) + (ββ1)) β€ ((ββ(π· + 1)) + (ββπ·))) |
37 | 1, 14, 10, 20, 36 | ltletrd 11402 | . 2 β’ (π· β (β β β»NN) β 1 < ((ββ(π· + 1)) + (ββπ·))) |
38 | pellfundge 42366 | . 2 β’ (π· β (β β β»NN) β ((ββ(π· + 1)) + (ββπ·)) β€ (PellFundβπ·)) | |
39 | 1, 10, 11, 37, 38 | ltletrd 11402 | 1 β’ (π· β (β β β»NN) β 1 < (PellFundβπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 β cdif 3937 class class class wbr 5143 βcfv 6542 (class class class)co 7415 βcr 11135 0cc0 11136 1c1 11137 + caddc 11139 < clt 11276 β€ cle 11277 βcn 12240 2c2 12295 βcsqrt 15210 β»NNcsquarenn 42320 PellFundcpellfund 42324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-omul 8488 df-er 8721 df-map 8843 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-acn 9963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-xnn0 12573 df-z 12587 df-uz 12851 df-q 12961 df-rp 13005 df-ico 13360 df-fz 13515 df-fl 13787 df-mod 13865 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-dvds 16229 df-gcd 16467 df-numer 16704 df-denom 16705 df-squarenn 42325 df-pell1qr 42326 df-pell14qr 42327 df-pell1234qr 42328 df-pellfund 42329 |
This theorem is referenced by: pellfundex 42370 pellfundrp 42372 pellfundne1 42373 pellfund14 42382 |
Copyright terms: Public domain | W3C validator |