Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellfundgt1 Structured version   Visualization version   GIF version

Theorem pellfundgt1 40360
Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.)
Assertion
Ref Expression
pellfundgt1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))

Proof of Theorem pellfundgt1
StepHypRef Expression
1 1red 10817 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ)
2 eldifi 4031 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
32peano2nnd 11830 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ)
43nnrpd 12609 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+)
54rpsqrtcld 14958 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+)
65rpred 12611 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ)
72nnrpd 12609 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+)
87rpsqrtcld 14958 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+)
98rpred 12611 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ)
106, 9readdcld 10845 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ)
11 pellfundre 40358 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ)
12 sqrt1 14818 . . . . 5 (√‘1) = 1
1312, 1eqeltrid 2838 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ)
1413, 13readdcld 10845 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ)
15 1lt2 11984 . . . . 5 1 < 2
1612, 12oveq12i 7214 . . . . . 6 ((√‘1) + (√‘1)) = (1 + 1)
17 1p1e2 11938 . . . . . 6 (1 + 1) = 2
1816, 17eqtri 2762 . . . . 5 ((√‘1) + (√‘1)) = 2
1915, 18breqtrri 5070 . . . 4 1 < ((√‘1) + (√‘1))
2019a1i 11 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1)))
213nnge1d 11861 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1))
22 0le1 11338 . . . . . . 7 0 ≤ 1
2322a1i 11 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1)
242nnred 11828 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ)
25 peano2re 10988 . . . . . . 7 (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ)
2624, 25syl 17 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ)
273nnnn0d 12133 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0)
2827nn0ge0d 12136 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1))
291, 23, 26, 28sqrtled 14973 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1))))
3021, 29mpbid 235 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1)))
312nnge1d 11861 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷)
322nnnn0d 12133 . . . . . . 7 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0)
3332nn0ge0d 12136 . . . . . 6 (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷)
341, 23, 24, 33sqrtled 14973 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷)))
3531, 34mpbid 235 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷))
3613, 13, 6, 9, 30, 35le2addd 11434 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷)))
371, 14, 10, 20, 36ltletrd 10975 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷)))
38 pellfundge 40359 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷))
391, 10, 11, 37, 38ltletrd 10975 1 (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  cdif 3854   class class class wbr 5043  cfv 6369  (class class class)co 7202  cr 10711  0cc0 10712  1c1 10713   + caddc 10715   < clt 10850  cle 10851  cn 11813  2c2 11868  csqrt 14779  NNcsquarenn 40313  PellFundcpellfund 40317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-inf2 9245  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-oadd 8195  df-omul 8196  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-oi 9115  df-card 9538  df-acn 9541  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-q 12528  df-rp 12570  df-ico 12924  df-fz 13079  df-fl 13350  df-mod 13426  df-seq 13558  df-exp 13619  df-hash 13880  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-dvds 15797  df-gcd 16035  df-numer 16272  df-denom 16273  df-squarenn 40318  df-pell1qr 40319  df-pell14qr 40320  df-pell1234qr 40321  df-pellfund 40322
This theorem is referenced by:  pellfundex  40363  pellfundrp  40365  pellfundne1  40366  pellfund14  40375
  Copyright terms: Public domain W3C validator