| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pellfundgt1 | Structured version Visualization version GIF version | ||
| Description: Weak lower bound on the Pell fundamental solution. (Contributed by Stefan O'Rear, 19-Sep-2014.) |
| Ref | Expression |
|---|---|
| pellfundgt1 | ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1red 11116 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ∈ ℝ) | |
| 2 | eldifi 4082 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ) | |
| 3 | 2 | peano2nnd 12145 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ) |
| 4 | 3 | nnrpd 12935 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ+) |
| 5 | 4 | rpsqrtcld 15319 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ+) |
| 6 | 5 | rpred 12937 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘(𝐷 + 1)) ∈ ℝ) |
| 7 | 2 | nnrpd 12935 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ+) |
| 8 | 7 | rpsqrtcld 15319 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ+) |
| 9 | 8 | rpred 12937 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘𝐷) ∈ ℝ) |
| 10 | 6, 9 | readdcld 11144 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ∈ ℝ) |
| 11 | pellfundre 42864 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (PellFund‘𝐷) ∈ ℝ) | |
| 12 | sqrt1 15178 | . . . . 5 ⊢ (√‘1) = 1 | |
| 13 | 12, 1 | eqeltrid 2832 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ∈ ℝ) |
| 14 | 13, 13 | readdcld 11144 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ∈ ℝ) |
| 15 | 1lt2 12294 | . . . . 5 ⊢ 1 < 2 | |
| 16 | 12, 12 | oveq12i 7361 | . . . . . 6 ⊢ ((√‘1) + (√‘1)) = (1 + 1) |
| 17 | 1p1e2 12248 | . . . . . 6 ⊢ (1 + 1) = 2 | |
| 18 | 16, 17 | eqtri 2752 | . . . . 5 ⊢ ((√‘1) + (√‘1)) = 2 |
| 19 | 15, 18 | breqtrri 5119 | . . . 4 ⊢ 1 < ((√‘1) + (√‘1)) |
| 20 | 19 | a1i 11 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘1) + (√‘1))) |
| 21 | 3 | nnge1d 12176 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ (𝐷 + 1)) |
| 22 | 0le1 11643 | . . . . . . 7 ⊢ 0 ≤ 1 | |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 1) |
| 24 | 2 | nnred 12143 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℝ) |
| 25 | peano2re 11289 | . . . . . . 7 ⊢ (𝐷 ∈ ℝ → (𝐷 + 1) ∈ ℝ) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℝ) |
| 27 | 3 | nnnn0d 12445 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐷 + 1) ∈ ℕ0) |
| 28 | 27 | nn0ge0d 12448 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ (𝐷 + 1)) |
| 29 | 1, 23, 26, 28 | sqrtled 15334 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ (𝐷 + 1) ↔ (√‘1) ≤ (√‘(𝐷 + 1)))) |
| 30 | 21, 29 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘(𝐷 + 1))) |
| 31 | 2 | nnge1d 12176 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 ≤ 𝐷) |
| 32 | 2 | nnnn0d 12445 | . . . . . . 7 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ0) |
| 33 | 32 | nn0ge0d 12448 | . . . . . 6 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 0 ≤ 𝐷) |
| 34 | 1, 23, 24, 33 | sqrtled 15334 | . . . . 5 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (1 ≤ 𝐷 ↔ (√‘1) ≤ (√‘𝐷))) |
| 35 | 31, 34 | mpbid 232 | . . . 4 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → (√‘1) ≤ (√‘𝐷)) |
| 36 | 13, 13, 6, 9, 30, 35 | le2addd 11739 | . . 3 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘1) + (√‘1)) ≤ ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 37 | 1, 14, 10, 20, 36 | ltletrd 11276 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < ((√‘(𝐷 + 1)) + (√‘𝐷))) |
| 38 | pellfundge 42865 | . 2 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → ((√‘(𝐷 + 1)) + (√‘𝐷)) ≤ (PellFund‘𝐷)) | |
| 39 | 1, 10, 11, 37, 38 | ltletrd 11276 | 1 ⊢ (𝐷 ∈ (ℕ ∖ ◻NN) → 1 < (PellFund‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ∖ cdif 3900 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 < clt 11149 ≤ cle 11150 ℕcn 12128 2c2 12183 √csqrt 15140 ◻NNcsquarenn 42819 PellFundcpellfund 42823 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-inf2 9537 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-omul 8393 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-acn 9838 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-q 12850 df-rp 12894 df-ico 13254 df-fz 13411 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-gcd 16406 df-numer 16646 df-denom 16647 df-squarenn 42824 df-pell1qr 42825 df-pell14qr 42826 df-pell1234qr 42827 df-pellfund 42828 |
| This theorem is referenced by: pellfundex 42869 pellfundrp 42871 pellfundne1 42872 pellfund14 42881 |
| Copyright terms: Public domain | W3C validator |