Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnlog2ge0lt1 Structured version   Visualization version   GIF version

Theorem nnlog2ge0lt1 48728
Description: A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020.)
Assertion
Ref Expression
nnlog2ge0lt1 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))

Proof of Theorem nnlog2ge0lt1
StepHypRef Expression
1 0le0 12237 . . . . 5 0 ≤ 0
2 2cn 12211 . . . . . 6 2 ∈ ℂ
3 2ne0 12240 . . . . . 6 2 ≠ 0
4 1ne2 12339 . . . . . . 7 1 ≠ 2
54necomi 2983 . . . . . 6 2 ≠ 1
6 logb1 26726 . . . . . 6 ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0)
72, 3, 5, 6mp3an 1463 . . . . 5 (2 logb 1) = 0
81, 7breqtrri 5122 . . . 4 0 ≤ (2 logb 1)
9 0lt1 11650 . . . . 5 0 < 1
107, 9eqbrtri 5116 . . . 4 (2 logb 1) < 1
118, 10pm3.2i 470 . . 3 (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1)
12 oveq2 7363 . . . . 5 (𝑁 = 1 → (2 logb 𝑁) = (2 logb 1))
1312breq2d 5107 . . . 4 (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ↔ 0 ≤ (2 logb 1)))
1412breq1d 5105 . . . 4 (𝑁 = 1 → ((2 logb 𝑁) < 1 ↔ (2 logb 1) < 1))
1513, 14anbi12d 632 . . 3 (𝑁 = 1 → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1)))
1611, 15mpbiri 258 . 2 (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))
17 2z 12514 . . . . . . 7 2 ∈ ℤ
18 uzid 12757 . . . . . . 7 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
1917, 18ax-mp 5 . . . . . 6 2 ∈ (ℤ‘2)
2019a1i 11 . . . . 5 (𝑁 ∈ ℕ → 2 ∈ (ℤ‘2))
21 nnrp 12908 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
22 logbge0b 48725 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁))
2320, 21, 22syl2anc 584 . . . 4 (𝑁 ∈ ℕ → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁))
24 logblt1b 48726 . . . . 5 ((2 ∈ (ℤ‘2) ∧ 𝑁 ∈ ℝ+) → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2))
2520, 21, 24syl2anc 584 . . . 4 (𝑁 ∈ ℕ → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2))
2623, 25anbi12d 632 . . 3 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (1 ≤ 𝑁𝑁 < 2)))
27 df-2 12199 . . . . . . . 8 2 = (1 + 1)
2827breq2i 5103 . . . . . . 7 (𝑁 < 2 ↔ 𝑁 < (1 + 1))
2928a1i 11 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 < 2 ↔ 𝑁 < (1 + 1)))
3029anbi2d 630 . . . . 5 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
31 nnre 12143 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
32 1zzd 12513 . . . . . 6 (𝑁 ∈ ℕ → 1 ∈ ℤ)
33 flbi 13727 . . . . . 6 ((𝑁 ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
3431, 32, 33syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁𝑁 < (1 + 1))))
3530, 34bitr4d 282 . . . 4 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) ↔ (⌊‘𝑁) = 1))
36 nnz 12500 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
37 flid 13719 . . . . . . . . 9 (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁)
3836, 37syl 17 . . . . . . . 8 (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁)
3938eqcomd 2739 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 = (⌊‘𝑁))
4039adantr 480 . . . . . 6 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = (⌊‘𝑁))
41 simpr 484 . . . . . 6 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → (⌊‘𝑁) = 1)
4240, 41eqtrd 2768 . . . . 5 ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = 1)
4342ex 412 . . . 4 (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 → 𝑁 = 1))
4435, 43sylbid 240 . . 3 (𝑁 ∈ ℕ → ((1 ≤ 𝑁𝑁 < 2) → 𝑁 = 1))
4526, 44sylbid 240 . 2 (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → 𝑁 = 1))
4616, 45impbid2 226 1 (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929   class class class wbr 5095  cfv 6489  (class class class)co 7355  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   < clt 11157  cle 11158  cn 12136  2c2 12191  cz 12479  cuz 12742  +crp 12896  cfl 13701   logb clogb 26721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095  ax-addf 11096
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-pm 8762  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-fi 9306  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-q 12853  df-rp 12897  df-xneg 13017  df-xadd 13018  df-xmul 13019  df-ioo 13256  df-ioc 13257  df-ico 13258  df-icc 13259  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-fac 14188  df-bc 14217  df-hash 14245  df-shft 14981  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-limsup 15385  df-clim 15402  df-rlim 15403  df-sum 15601  df-ef 15981  df-sin 15983  df-cos 15984  df-pi 15986  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-starv 17183  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-unif 17191  df-hom 17192  df-cco 17193  df-rest 17333  df-topn 17334  df-0g 17352  df-gsum 17353  df-topgen 17354  df-pt 17355  df-prds 17358  df-xrs 17414  df-qtop 17419  df-imas 17420  df-xps 17422  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-mulg 18989  df-cntz 19237  df-cmn 19702  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22829  df-topon 22846  df-topsp 22868  df-bases 22881  df-cld 22954  df-ntr 22955  df-cls 22956  df-nei 23033  df-lp 23071  df-perf 23072  df-cn 23162  df-cnp 23163  df-haus 23250  df-tx 23497  df-hmeo 23690  df-fil 23781  df-fm 23873  df-flim 23874  df-flf 23875  df-xms 24255  df-ms 24256  df-tms 24257  df-cncf 24818  df-limc 25814  df-dv 25815  df-log 26512  df-logb 26722
This theorem is referenced by:  blen1b  48750
  Copyright terms: Public domain W3C validator