![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nnlog2ge0lt1 | Structured version Visualization version GIF version |
Description: A positive integer is 1 iff its binary logarithm is between 0 and 1. (Contributed by AV, 30-May-2020.) |
Ref | Expression |
---|---|
nnlog2ge0lt1 | ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0le0 12254 | . . . . 5 ⊢ 0 ≤ 0 | |
2 | 2cn 12228 | . . . . . 6 ⊢ 2 ∈ ℂ | |
3 | 2ne0 12257 | . . . . . 6 ⊢ 2 ≠ 0 | |
4 | 1ne2 12361 | . . . . . . 7 ⊢ 1 ≠ 2 | |
5 | 4 | necomi 2998 | . . . . . 6 ⊢ 2 ≠ 1 |
6 | logb1 26119 | . . . . . 6 ⊢ ((2 ∈ ℂ ∧ 2 ≠ 0 ∧ 2 ≠ 1) → (2 logb 1) = 0) | |
7 | 2, 3, 5, 6 | mp3an 1461 | . . . . 5 ⊢ (2 logb 1) = 0 |
8 | 1, 7 | breqtrri 5132 | . . . 4 ⊢ 0 ≤ (2 logb 1) |
9 | 0lt1 11677 | . . . . 5 ⊢ 0 < 1 | |
10 | 7, 9 | eqbrtri 5126 | . . . 4 ⊢ (2 logb 1) < 1 |
11 | 8, 10 | pm3.2i 471 | . . 3 ⊢ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1) |
12 | oveq2 7365 | . . . . 5 ⊢ (𝑁 = 1 → (2 logb 𝑁) = (2 logb 1)) | |
13 | 12 | breq2d 5117 | . . . 4 ⊢ (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ↔ 0 ≤ (2 logb 1))) |
14 | 12 | breq1d 5115 | . . . 4 ⊢ (𝑁 = 1 → ((2 logb 𝑁) < 1 ↔ (2 logb 1) < 1)) |
15 | 13, 14 | anbi12d 631 | . . 3 ⊢ (𝑁 = 1 → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (0 ≤ (2 logb 1) ∧ (2 logb 1) < 1))) |
16 | 11, 15 | mpbiri 257 | . 2 ⊢ (𝑁 = 1 → (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1)) |
17 | 2z 12535 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
18 | uzid 12778 | . . . . . . 7 ⊢ (2 ∈ ℤ → 2 ∈ (ℤ≥‘2)) | |
19 | 17, 18 | ax-mp 5 | . . . . . 6 ⊢ 2 ∈ (ℤ≥‘2) |
20 | 19 | a1i 11 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 2 ∈ (ℤ≥‘2)) |
21 | nnrp 12926 | . . . . 5 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+) | |
22 | logbge0b 46639 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℝ+) → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁)) | |
23 | 20, 21, 22 | syl2anc 584 | . . . 4 ⊢ (𝑁 ∈ ℕ → (0 ≤ (2 logb 𝑁) ↔ 1 ≤ 𝑁)) |
24 | logblt1b 46640 | . . . . 5 ⊢ ((2 ∈ (ℤ≥‘2) ∧ 𝑁 ∈ ℝ+) → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2)) | |
25 | 20, 21, 24 | syl2anc 584 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((2 logb 𝑁) < 1 ↔ 𝑁 < 2)) |
26 | 23, 25 | anbi12d 631 | . . 3 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) ↔ (1 ≤ 𝑁 ∧ 𝑁 < 2))) |
27 | df-2 12216 | . . . . . . . 8 ⊢ 2 = (1 + 1) | |
28 | 27 | breq2i 5113 | . . . . . . 7 ⊢ (𝑁 < 2 ↔ 𝑁 < (1 + 1)) |
29 | 28 | a1i 11 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (𝑁 < 2 ↔ 𝑁 < (1 + 1))) |
30 | 29 | anbi2d 629 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) |
31 | nnre 12160 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
32 | 1zzd 12534 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → 1 ∈ ℤ) | |
33 | flbi 13721 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ ∧ 1 ∈ ℤ) → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) | |
34 | 31, 32, 33 | syl2anc 584 | . . . . 5 ⊢ (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 ↔ (1 ≤ 𝑁 ∧ 𝑁 < (1 + 1)))) |
35 | 30, 34 | bitr4d 281 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) ↔ (⌊‘𝑁) = 1)) |
36 | nnz 12520 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℤ) | |
37 | flid 13713 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → (⌊‘𝑁) = 𝑁) | |
38 | 36, 37 | syl 17 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → (⌊‘𝑁) = 𝑁) |
39 | 38 | eqcomd 2742 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 = (⌊‘𝑁)) |
40 | 39 | adantr 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = (⌊‘𝑁)) |
41 | simpr 485 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → (⌊‘𝑁) = 1) | |
42 | 40, 41 | eqtrd 2776 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (⌊‘𝑁) = 1) → 𝑁 = 1) |
43 | 42 | ex 413 | . . . 4 ⊢ (𝑁 ∈ ℕ → ((⌊‘𝑁) = 1 → 𝑁 = 1)) |
44 | 35, 43 | sylbid 239 | . . 3 ⊢ (𝑁 ∈ ℕ → ((1 ≤ 𝑁 ∧ 𝑁 < 2) → 𝑁 = 1)) |
45 | 26, 44 | sylbid 239 | . 2 ⊢ (𝑁 ∈ ℕ → ((0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1) → 𝑁 = 1)) |
46 | 16, 45 | impbid2 225 | 1 ⊢ (𝑁 ∈ ℕ → (𝑁 = 1 ↔ (0 ≤ (2 logb 𝑁) ∧ (2 logb 𝑁) < 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 ℝcr 11050 0cc0 11051 1c1 11052 + caddc 11054 < clt 11189 ≤ cle 11190 ℕcn 12153 2c2 12208 ℤcz 12499 ℤ≥cuz 12763 ℝ+crp 12915 ⌊cfl 13695 logb clogb 26114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-logb 26115 |
This theorem is referenced by: blen1b 46664 |
Copyright terms: Public domain | W3C validator |