Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrcomand Structured version   Visualization version   GIF version

Theorem cgrcomand 35815
Description: Deduction form of cgrcom 35814. (Contributed by Scott Fenton, 13-Oct-2013.)
Hypotheses
Ref Expression
cgrcomand.1 (𝜑𝑁 ∈ ℕ)
cgrcomand.2 (𝜑𝐴 ∈ (𝔼‘𝑁))
cgrcomand.3 (𝜑𝐵 ∈ (𝔼‘𝑁))
cgrcomand.4 (𝜑𝐶 ∈ (𝔼‘𝑁))
cgrcomand.5 (𝜑𝐷 ∈ (𝔼‘𝑁))
cgrcomand.6 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
Assertion
Ref Expression
cgrcomand ((𝜑𝜓) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝐵⟩)

Proof of Theorem cgrcomand
StepHypRef Expression
1 cgrcomand.6 . 2 ((𝜑𝜓) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩)
2 cgrcomand.1 . . . 4 (𝜑𝑁 ∈ ℕ)
3 cgrcomand.2 . . . 4 (𝜑𝐴 ∈ (𝔼‘𝑁))
4 cgrcomand.3 . . . 4 (𝜑𝐵 ∈ (𝔼‘𝑁))
5 cgrcomand.4 . . . 4 (𝜑𝐶 ∈ (𝔼‘𝑁))
6 cgrcomand.5 . . . 4 (𝜑𝐷 ∈ (𝔼‘𝑁))
7 cgrcom 35814 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝐵⟩))
82, 3, 4, 5, 6, 7syl122anc 1376 . . 3 (𝜑 → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝐵⟩))
98adantr 479 . 2 ((𝜑𝜓) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝐵⟩))
101, 9mpbid 231 1 ((𝜑𝜓) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝐵⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wcel 2099  cop 4639   class class class wbr 5153  cfv 6554  cn 12264  𝔼cee 28822  Cgrccgr 28824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-er 8734  df-map 8857  df-en 8975  df-dom 8976  df-sdom 8977  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-z 12611  df-uz 12875  df-fz 13539  df-seq 14022  df-exp 14082  df-sum 15691  df-ee 28825  df-cgr 28827
This theorem is referenced by:  cgrtr  35816  cgrtr3  35818  cgrxfr  35879  btwnconn1lem1  35911  btwnconn1lem6  35916  btwnconn1lem10  35920  btwnconn1lem11  35921  btwnconn1lem12  35922  midofsegid  35928  brsegle2  35933  outsideofeq  35954
  Copyright terms: Public domain W3C validator