MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cycsubgss Structured version   Visualization version   GIF version

Theorem cycsubgss 19199
Description: The cyclic subgroup generated by an element 𝐴 is a subset of any subgroup containing 𝐴. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cycsubg.x 𝑋 = (Base‘𝐺)
cycsubg.t · = (.g𝐺)
cycsubg.f 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
Assertion
Ref Expression
cycsubgss ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ran 𝐹𝑆)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥, ·   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem cycsubgss
StepHypRef Expression
1 cycsubg.t . . . . . 6 · = (.g𝐺)
21subgmulgcl 19131 . . . . 5 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ ∧ 𝐴𝑆) → (𝑥 · 𝐴) ∈ 𝑆)
323expa 1118 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑥 ∈ ℤ) ∧ 𝐴𝑆) → (𝑥 · 𝐴) ∈ 𝑆)
43an32s 652 . . 3 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) ∧ 𝑥 ∈ ℤ) → (𝑥 · 𝐴) ∈ 𝑆)
5 cycsubg.f . . 3 𝐹 = (𝑥 ∈ ℤ ↦ (𝑥 · 𝐴))
64, 5fmptd 7115 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → 𝐹:ℤ⟶𝑆)
76frnd 6725 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑆) → ran 𝐹𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3933  cmpt 5207  ran crn 5668  cfv 6542  (class class class)co 7414  cz 12597  Basecbs 17230  .gcmg 19059  SubGrpcsubg 19112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-z 12598  df-uz 12862  df-fz 13531  df-seq 14026  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17257  df-plusg 17290  df-0g 17462  df-mgm 18627  df-sgrp 18706  df-mnd 18722  df-grp 18928  df-minusg 18929  df-mulg 19060  df-subg 19115
This theorem is referenced by:  cycsubg  19200
  Copyright terms: Public domain W3C validator