![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decsubi | Structured version Visualization version GIF version |
Description: Difference between a numeral ๐ and a nonnegative integer ๐ (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decaddi.1 | โข ๐ด โ โ0 |
decaddi.2 | โข ๐ต โ โ0 |
decaddi.3 | โข ๐ โ โ0 |
decaddi.4 | โข ๐ = ;๐ด๐ต |
decaddci.5 | โข (๐ด + 1) = ๐ท |
decsubi.5 | โข (๐ต โ ๐) = ๐ถ |
Ref | Expression |
---|---|
decsubi | โข (๐ โ ๐) = ;๐ด๐ถ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12694 | . . . . 5 โข ;10 โ โ0 | |
2 | decaddi.1 | . . . . 5 โข ๐ด โ โ0 | |
3 | 1, 2 | nn0mulcli 12509 | . . . 4 โข (;10 ยท ๐ด) โ โ0 |
4 | 3 | nn0cni 12483 | . . 3 โข (;10 ยท ๐ด) โ โ |
5 | decaddi.2 | . . . 4 โข ๐ต โ โ0 | |
6 | 5 | nn0cni 12483 | . . 3 โข ๐ต โ โ |
7 | decaddi.3 | . . . 4 โข ๐ โ โ0 | |
8 | 7 | nn0cni 12483 | . . 3 โข ๐ โ โ |
9 | 4, 6, 8 | addsubassi 11550 | . 2 โข (((;10 ยท ๐ด) + ๐ต) โ ๐) = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
10 | decaddi.4 | . . . 4 โข ๐ = ;๐ด๐ต | |
11 | dfdec10 12679 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
12 | 10, 11 | eqtri 2760 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
13 | 12 | oveq1i 7418 | . 2 โข (๐ โ ๐) = (((;10 ยท ๐ด) + ๐ต) โ ๐) |
14 | dfdec10 12679 | . . 3 โข ;๐ด๐ถ = ((;10 ยท ๐ด) + ๐ถ) | |
15 | decsubi.5 | . . . . 5 โข (๐ต โ ๐) = ๐ถ | |
16 | 15 | eqcomi 2741 | . . . 4 โข ๐ถ = (๐ต โ ๐) |
17 | 16 | oveq2i 7419 | . . 3 โข ((;10 ยท ๐ด) + ๐ถ) = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
18 | 14, 17 | eqtri 2760 | . 2 โข ;๐ด๐ถ = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
19 | 9, 13, 18 | 3eqtr4i 2770 | 1 โข (๐ โ ๐) = ;๐ด๐ถ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 โ wcel 2106 (class class class)co 7408 0cc0 11109 1c1 11110 + caddc 11112 ยท cmul 11114 โ cmin 11443 โ0cn0 12471 ;cdc 12676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-ltxr 11252 df-sub 11445 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-dec 12677 |
This theorem is referenced by: fmtno5 46215 m5prm 46256 m7prm 46258 m11nprm 46259 341fppr2 46392 ackval41 47371 |
Copyright terms: Public domain | W3C validator |