| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > decsubi | Structured version Visualization version GIF version | ||
| Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
| decsubi.5 | ⊢ (𝐵 − 𝑁) = 𝐶 |
| Ref | Expression |
|---|---|
| decsubi | ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 10nn0 12674 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
| 2 | decaddi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | nn0mulcli 12487 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
| 4 | 3 | nn0cni 12461 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
| 5 | decaddi.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12461 | . . 3 ⊢ 𝐵 ∈ ℂ |
| 7 | decaddi.3 | . . . 4 ⊢ 𝑁 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12461 | . . 3 ⊢ 𝑁 ∈ ℂ |
| 9 | 4, 6, 8 | addsubassi 11520 | . 2 ⊢ (((;10 · 𝐴) + 𝐵) − 𝑁) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 10 | decaddi.4 | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 11 | dfdec10 12659 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 12 | 10, 11 | eqtri 2753 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
| 13 | 12 | oveq1i 7400 | . 2 ⊢ (𝑀 − 𝑁) = (((;10 · 𝐴) + 𝐵) − 𝑁) |
| 14 | dfdec10 12659 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 15 | decsubi.5 | . . . . 5 ⊢ (𝐵 − 𝑁) = 𝐶 | |
| 16 | 15 | eqcomi 2739 | . . . 4 ⊢ 𝐶 = (𝐵 − 𝑁) |
| 17 | 16 | oveq2i 7401 | . . 3 ⊢ ((;10 · 𝐴) + 𝐶) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 18 | 14, 17 | eqtri 2753 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
| 19 | 9, 13, 18 | 3eqtr4i 2763 | 1 ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 (class class class)co 7390 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 ℕ0cn0 12449 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 df-sub 11414 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-dec 12657 |
| This theorem is referenced by: fmtno5 47562 m5prm 47603 m7prm 47605 m11nprm 47606 341fppr2 47739 ackval41 48688 |
| Copyright terms: Public domain | W3C validator |