Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > decsubi | Structured version Visualization version GIF version |
Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
decsubi.5 | ⊢ (𝐵 − 𝑁) = 𝐶 |
Ref | Expression |
---|---|
decsubi | ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12384 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
2 | decaddi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
3 | 1, 2 | nn0mulcli 12201 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 |
4 | 3 | nn0cni 12175 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ |
5 | decaddi.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
6 | 5 | nn0cni 12175 | . . 3 ⊢ 𝐵 ∈ ℂ |
7 | decaddi.3 | . . . 4 ⊢ 𝑁 ∈ ℕ0 | |
8 | 7 | nn0cni 12175 | . . 3 ⊢ 𝑁 ∈ ℂ |
9 | 4, 6, 8 | addsubassi 11242 | . 2 ⊢ (((;10 · 𝐴) + 𝐵) − 𝑁) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
10 | decaddi.4 | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
11 | dfdec10 12369 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
12 | 10, 11 | eqtri 2766 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) |
13 | 12 | oveq1i 7265 | . 2 ⊢ (𝑀 − 𝑁) = (((;10 · 𝐴) + 𝐵) − 𝑁) |
14 | dfdec10 12369 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
15 | decsubi.5 | . . . . 5 ⊢ (𝐵 − 𝑁) = 𝐶 | |
16 | 15 | eqcomi 2747 | . . . 4 ⊢ 𝐶 = (𝐵 − 𝑁) |
17 | 16 | oveq2i 7266 | . . 3 ⊢ ((;10 · 𝐴) + 𝐶) = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
18 | 14, 17 | eqtri 2766 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + (𝐵 − 𝑁)) |
19 | 9, 13, 18 | 3eqtr4i 2776 | 1 ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 − cmin 11135 ℕ0cn0 12163 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-dec 12367 |
This theorem is referenced by: fmtno5 44897 m5prm 44938 m7prm 44940 m11nprm 44941 341fppr2 45074 ackval41 45929 |
Copyright terms: Public domain | W3C validator |