![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decsubi | Structured version Visualization version GIF version |
Description: Difference between a numeral ๐ and a nonnegative integer ๐ (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decaddi.1 | โข ๐ด โ โ0 |
decaddi.2 | โข ๐ต โ โ0 |
decaddi.3 | โข ๐ โ โ0 |
decaddi.4 | โข ๐ = ;๐ด๐ต |
decaddci.5 | โข (๐ด + 1) = ๐ท |
decsubi.5 | โข (๐ต โ ๐) = ๐ถ |
Ref | Expression |
---|---|
decsubi | โข (๐ โ ๐) = ;๐ด๐ถ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 10nn0 12731 | . . . . 5 โข ;10 โ โ0 | |
2 | decaddi.1 | . . . . 5 โข ๐ด โ โ0 | |
3 | 1, 2 | nn0mulcli 12546 | . . . 4 โข (;10 ยท ๐ด) โ โ0 |
4 | 3 | nn0cni 12520 | . . 3 โข (;10 ยท ๐ด) โ โ |
5 | decaddi.2 | . . . 4 โข ๐ต โ โ0 | |
6 | 5 | nn0cni 12520 | . . 3 โข ๐ต โ โ |
7 | decaddi.3 | . . . 4 โข ๐ โ โ0 | |
8 | 7 | nn0cni 12520 | . . 3 โข ๐ โ โ |
9 | 4, 6, 8 | addsubassi 11587 | . 2 โข (((;10 ยท ๐ด) + ๐ต) โ ๐) = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
10 | decaddi.4 | . . . 4 โข ๐ = ;๐ด๐ต | |
11 | dfdec10 12716 | . . . 4 โข ;๐ด๐ต = ((;10 ยท ๐ด) + ๐ต) | |
12 | 10, 11 | eqtri 2755 | . . 3 โข ๐ = ((;10 ยท ๐ด) + ๐ต) |
13 | 12 | oveq1i 7434 | . 2 โข (๐ โ ๐) = (((;10 ยท ๐ด) + ๐ต) โ ๐) |
14 | dfdec10 12716 | . . 3 โข ;๐ด๐ถ = ((;10 ยท ๐ด) + ๐ถ) | |
15 | decsubi.5 | . . . . 5 โข (๐ต โ ๐) = ๐ถ | |
16 | 15 | eqcomi 2736 | . . . 4 โข ๐ถ = (๐ต โ ๐) |
17 | 16 | oveq2i 7435 | . . 3 โข ((;10 ยท ๐ด) + ๐ถ) = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
18 | 14, 17 | eqtri 2755 | . 2 โข ;๐ด๐ถ = ((;10 ยท ๐ด) + (๐ต โ ๐)) |
19 | 9, 13, 18 | 3eqtr4i 2765 | 1 โข (๐ โ ๐) = ;๐ด๐ถ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 โ wcel 2098 (class class class)co 7424 0cc0 11144 1c1 11145 + caddc 11147 ยท cmul 11149 โ cmin 11480 โ0cn0 12508 ;cdc 12713 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-iun 5000 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7875 df-2nd 7998 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-er 8729 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11286 df-mnf 11287 df-ltxr 11289 df-sub 11482 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-dec 12714 |
This theorem is referenced by: fmtno5 46899 m5prm 46940 m7prm 46942 m11nprm 46943 341fppr2 47076 ackval41 47819 |
Copyright terms: Public domain | W3C validator |