|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > decsubi | Structured version Visualization version GIF version | ||
| Description: Difference between a numeral 𝑀 and a nonnegative integer 𝑁 (no underflow). (Contributed by AV, 22-Jul-2021.) (Revised by AV, 6-Sep-2021.) | 
| Ref | Expression | 
|---|---|
| decaddi.1 | ⊢ 𝐴 ∈ ℕ0 | 
| decaddi.2 | ⊢ 𝐵 ∈ ℕ0 | 
| decaddi.3 | ⊢ 𝑁 ∈ ℕ0 | 
| decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 | 
| decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 | 
| decsubi.5 | ⊢ (𝐵 − 𝑁) = 𝐶 | 
| Ref | Expression | 
|---|---|
| decsubi | ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 10nn0 12751 | . . . . 5 ⊢ ;10 ∈ ℕ0 | |
| 2 | decaddi.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 1, 2 | nn0mulcli 12564 | . . . 4 ⊢ (;10 · 𝐴) ∈ ℕ0 | 
| 4 | 3 | nn0cni 12538 | . . 3 ⊢ (;10 · 𝐴) ∈ ℂ | 
| 5 | decaddi.2 | . . . 4 ⊢ 𝐵 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12538 | . . 3 ⊢ 𝐵 ∈ ℂ | 
| 7 | decaddi.3 | . . . 4 ⊢ 𝑁 ∈ ℕ0 | |
| 8 | 7 | nn0cni 12538 | . . 3 ⊢ 𝑁 ∈ ℂ | 
| 9 | 4, 6, 8 | addsubassi 11600 | . 2 ⊢ (((;10 · 𝐴) + 𝐵) − 𝑁) = ((;10 · 𝐴) + (𝐵 − 𝑁)) | 
| 10 | decaddi.4 | . . . 4 ⊢ 𝑀 = ;𝐴𝐵 | |
| 11 | dfdec10 12736 | . . . 4 ⊢ ;𝐴𝐵 = ((;10 · 𝐴) + 𝐵) | |
| 12 | 10, 11 | eqtri 2765 | . . 3 ⊢ 𝑀 = ((;10 · 𝐴) + 𝐵) | 
| 13 | 12 | oveq1i 7441 | . 2 ⊢ (𝑀 − 𝑁) = (((;10 · 𝐴) + 𝐵) − 𝑁) | 
| 14 | dfdec10 12736 | . . 3 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + 𝐶) | |
| 15 | decsubi.5 | . . . . 5 ⊢ (𝐵 − 𝑁) = 𝐶 | |
| 16 | 15 | eqcomi 2746 | . . . 4 ⊢ 𝐶 = (𝐵 − 𝑁) | 
| 17 | 16 | oveq2i 7442 | . . 3 ⊢ ((;10 · 𝐴) + 𝐶) = ((;10 · 𝐴) + (𝐵 − 𝑁)) | 
| 18 | 14, 17 | eqtri 2765 | . 2 ⊢ ;𝐴𝐶 = ((;10 · 𝐴) + (𝐵 − 𝑁)) | 
| 19 | 9, 13, 18 | 3eqtr4i 2775 | 1 ⊢ (𝑀 − 𝑁) = ;𝐴𝐶 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1540 ∈ wcel 2108 (class class class)co 7431 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 − cmin 11492 ℕ0cn0 12526 ;cdc 12733 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-ltxr 11300 df-sub 11494 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-dec 12734 | 
| This theorem is referenced by: fmtno5 47544 m5prm 47585 m7prm 47587 m11nprm 47588 341fppr2 47721 ackval41 48616 | 
| Copyright terms: Public domain | W3C validator |