![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > decaddci2 | Structured version Visualization version GIF version |
Description: Add two numerals 𝑀 and 𝑁 (no carry). (Contributed by Mario Carneiro, 18-Feb-2014.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
decaddi.1 | ⊢ 𝐴 ∈ ℕ0 |
decaddi.2 | ⊢ 𝐵 ∈ ℕ0 |
decaddi.3 | ⊢ 𝑁 ∈ ℕ0 |
decaddi.4 | ⊢ 𝑀 = ;𝐴𝐵 |
decaddci.5 | ⊢ (𝐴 + 1) = 𝐷 |
decaddci2.6 | ⊢ (𝐵 + 𝑁) = ;10 |
Ref | Expression |
---|---|
decaddci2 | ⊢ (𝑀 + 𝑁) = ;𝐷0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | decaddi.1 | . 2 ⊢ 𝐴 ∈ ℕ0 | |
2 | decaddi.2 | . 2 ⊢ 𝐵 ∈ ℕ0 | |
3 | decaddi.3 | . 2 ⊢ 𝑁 ∈ ℕ0 | |
4 | decaddi.4 | . 2 ⊢ 𝑀 = ;𝐴𝐵 | |
5 | decaddci.5 | . 2 ⊢ (𝐴 + 1) = 𝐷 | |
6 | 0nn0 12539 | . 2 ⊢ 0 ∈ ℕ0 | |
7 | decaddci2.6 | . 2 ⊢ (𝐵 + 𝑁) = ;10 | |
8 | 1, 2, 3, 4, 5, 6, 7 | decaddci 12790 | 1 ⊢ (𝑀 + 𝑁) = ;𝐷0 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 (class class class)co 7424 0cc0 11158 1c1 11159 + caddc 11161 ℕ0cn0 12524 ;cdc 12729 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-er 8734 df-en 8975 df-dom 8976 df-sdom 8977 df-pnf 11300 df-mnf 11301 df-ltxr 11303 df-sub 11496 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-dec 12730 |
This theorem is referenced by: 5t4e20 12831 6t5e30 12836 8t5e40 12847 1259lem5 17137 2503lem2 17140 2503prm 17142 4001lem1 17143 4001lem3 17145 log2ub 26977 3lexlogpow5ineq1 41753 sqn5i 42098 235t711 42106 sum9cubes 42326 fmtno5faclem2 47152 m11nprm 47173 |
Copyright terms: Public domain | W3C validator |