Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnprodn0 Structured version   Visualization version   GIF version

Theorem domnprodn0 33226
Description: In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
domnprodn0.1 𝐵 = (Base‘𝑅)
domnprodn0.2 𝑀 = (mulGrp‘𝑅)
domnprodn0.3 0 = (0g𝑅)
domnprodn0.4 (𝜑𝑅 ∈ Domn)
domnprodn0.5 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
Assertion
Ref Expression
domnprodn0 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )

Proof of Theorem domnprodn0
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnprodn0.5 . 2 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
2 oveq2 7395 . . . . 5 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
32neeq1d 2984 . . . 4 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
43imbi2d 340 . . 3 (𝑔 = ∅ → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg ∅) ≠ 0 )))
5 oveq2 7395 . . . . 5 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
65neeq1d 2984 . . . 4 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
76imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝑓) ≠ 0 )))
8 oveq2 7395 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
98neeq1d 2984 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
109imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
11 oveq2 7395 . . . . 5 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
1211neeq1d 2984 . . . 4 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
1312imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )))
14 domnprodn0.2 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
15 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidval 20092 . . . . . 6 (1r𝑅) = (0g𝑀)
1716gsum0 18611 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
1817a1i 11 . . . 4 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
19 domnprodn0.4 . . . . 5 (𝜑𝑅 ∈ Domn)
20 domnnzr 20615 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
21 domnprodn0.3 . . . . . 6 0 = (0g𝑅)
2215, 21nzrnz 20424 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
2319, 20, 223syl 18 . . . 4 (𝜑 → (1r𝑅) ≠ 0 )
2418, 23eqnetrd 2992 . . 3 (𝜑 → (𝑀 Σg ∅) ≠ 0 )
25 domnring 20616 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2614ringmgp 20148 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
2719, 25, 263syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
2827ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑀 ∈ Mnd)
29 difssd 4100 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∖ { 0 }) ⊆ 𝐵)
30 sswrd 14487 . . . . . . . . . . . 12 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3231sselda 3946 . . . . . . . . . 10 ((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) → 𝑓 ∈ Word 𝐵)
3332ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑓 ∈ Word 𝐵)
34 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥 ∈ (𝐵 ∖ { 0 }))
3534eldifad 3926 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥𝐵)
36 domnprodn0.1 . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3714, 36mgpbas 20054 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
38 eqid 2729 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3914, 38mgpplusg 20053 . . . . . . . . . 10 (.r𝑅) = (+g𝑀)
4037, 39gsumccatsn 18770 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4128, 33, 35, 40syl3anc 1373 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4219ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑅 ∈ Domn)
4337gsumwcl 18766 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵) → (𝑀 Σg 𝑓) ∈ 𝐵)
4428, 33, 43syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
45 simpr 484 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
46 eldifsni 4754 . . . . . . . . . 10 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
4734, 46syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥0 )
4836, 38, 21domnmuln0 20618 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑀 Σg 𝑓) ∈ 𝐵 ∧ (𝑀 Σg 𝑓) ≠ 0 ) ∧ (𝑥𝐵𝑥0 )) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
4942, 44, 45, 35, 47, 48syl122anc 1381 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
5041, 49eqnetrd 2992 . . . . . . 7 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )
5150ex 412 . . . . . 6 (((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5251anasss 466 . . . . 5 ((𝜑 ∧ (𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 }))) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5352expcom 413 . . . 4 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝜑 → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
5453a2d 29 . . 3 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝜑 → (𝑀 Σg 𝑓) ≠ 0 ) → (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
554, 7, 10, 13, 24, 54wrdind 14687 . 2 (𝐹 ∈ Word (𝐵 ∖ { 0 }) → (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ))
561, 55mpcom 38 1 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  wss 3914  c0 4296  {csn 4589  cfv 6511  (class class class)co 7387  Word cword 14478   ++ cconcat 14535  ⟨“cs1 14560  Basecbs 17179  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  NzRingcnzr 20421  Domncdomn 20601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-0g 17404  df-gsum 17405  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-domn 20604
This theorem is referenced by:  dfufd2lem  33520
  Copyright terms: Public domain W3C validator