Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnprodn0 Structured version   Visualization version   GIF version

Theorem domnprodn0 33249
Description: In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
domnprodn0.1 𝐵 = (Base‘𝑅)
domnprodn0.2 𝑀 = (mulGrp‘𝑅)
domnprodn0.3 0 = (0g𝑅)
domnprodn0.4 (𝜑𝑅 ∈ Domn)
domnprodn0.5 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
Assertion
Ref Expression
domnprodn0 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )

Proof of Theorem domnprodn0
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnprodn0.5 . 2 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
2 oveq2 7360 . . . . 5 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
32neeq1d 2988 . . . 4 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
43imbi2d 340 . . 3 (𝑔 = ∅ → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg ∅) ≠ 0 )))
5 oveq2 7360 . . . . 5 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
65neeq1d 2988 . . . 4 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
76imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝑓) ≠ 0 )))
8 oveq2 7360 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
98neeq1d 2988 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
109imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
11 oveq2 7360 . . . . 5 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
1211neeq1d 2988 . . . 4 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
1312imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )))
14 domnprodn0.2 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
15 eqid 2733 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidval 20103 . . . . . 6 (1r𝑅) = (0g𝑀)
1716gsum0 18594 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
1817a1i 11 . . . 4 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
19 domnprodn0.4 . . . . 5 (𝜑𝑅 ∈ Domn)
20 domnnzr 20623 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
21 domnprodn0.3 . . . . . 6 0 = (0g𝑅)
2215, 21nzrnz 20432 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
2319, 20, 223syl 18 . . . 4 (𝜑 → (1r𝑅) ≠ 0 )
2418, 23eqnetrd 2996 . . 3 (𝜑 → (𝑀 Σg ∅) ≠ 0 )
25 domnring 20624 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2614ringmgp 20159 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
2719, 25, 263syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
2827ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑀 ∈ Mnd)
29 difssd 4086 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∖ { 0 }) ⊆ 𝐵)
30 sswrd 14431 . . . . . . . . . . . 12 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3231sselda 3930 . . . . . . . . . 10 ((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) → 𝑓 ∈ Word 𝐵)
3332ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑓 ∈ Word 𝐵)
34 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥 ∈ (𝐵 ∖ { 0 }))
3534eldifad 3910 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥𝐵)
36 domnprodn0.1 . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3714, 36mgpbas 20065 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
38 eqid 2733 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3914, 38mgpplusg 20064 . . . . . . . . . 10 (.r𝑅) = (+g𝑀)
4037, 39gsumccatsn 18753 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4128, 33, 35, 40syl3anc 1373 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4219ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑅 ∈ Domn)
4337gsumwcl 18749 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵) → (𝑀 Σg 𝑓) ∈ 𝐵)
4428, 33, 43syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
45 simpr 484 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
46 eldifsni 4741 . . . . . . . . . 10 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
4734, 46syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥0 )
4836, 38, 21domnmuln0 20626 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑀 Σg 𝑓) ∈ 𝐵 ∧ (𝑀 Σg 𝑓) ≠ 0 ) ∧ (𝑥𝐵𝑥0 )) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
4942, 44, 45, 35, 47, 48syl122anc 1381 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
5041, 49eqnetrd 2996 . . . . . . 7 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )
5150ex 412 . . . . . 6 (((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5251anasss 466 . . . . 5 ((𝜑 ∧ (𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 }))) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5352expcom 413 . . . 4 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝜑 → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
5453a2d 29 . . 3 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝜑 → (𝑀 Σg 𝑓) ≠ 0 ) → (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
554, 7, 10, 13, 24, 54wrdind 14631 . 2 (𝐹 ∈ Word (𝐵 ∖ { 0 }) → (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ))
561, 55mpcom 38 1 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  cdif 3895  wss 3898  c0 4282  {csn 4575  cfv 6486  (class class class)co 7352  Word cword 14422   ++ cconcat 14479  ⟨“cs1 14505  Basecbs 17122  .rcmulr 17164  0gc0g 17345   Σg cgsu 17346  Mndcmnd 18644  mulGrpcmgp 20060  1rcur 20101  Ringcrg 20153  NzRingcnzr 20429  Domncdomn 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-n0 12389  df-xnn0 12462  df-z 12476  df-uz 12739  df-fz 13410  df-fzo 13557  df-seq 13911  df-hash 14240  df-word 14423  df-lsw 14472  df-concat 14480  df-s1 14506  df-substr 14551  df-pfx 14581  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-gsum 17348  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-nzr 20430  df-domn 20612
This theorem is referenced by:  dfufd2lem  33521
  Copyright terms: Public domain W3C validator