Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnprodn0 Structured version   Visualization version   GIF version

Theorem domnprodn0 33280
Description: In a domain, a finite product of nonzero terms is nonzero. (Contributed by Thierry Arnoux, 6-Jun-2025.)
Hypotheses
Ref Expression
domnprodn0.1 𝐵 = (Base‘𝑅)
domnprodn0.2 𝑀 = (mulGrp‘𝑅)
domnprodn0.3 0 = (0g𝑅)
domnprodn0.4 (𝜑𝑅 ∈ Domn)
domnprodn0.5 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
Assertion
Ref Expression
domnprodn0 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )

Proof of Theorem domnprodn0
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 domnprodn0.5 . 2 (𝜑𝐹 ∈ Word (𝐵 ∖ { 0 }))
2 oveq2 7440 . . . . 5 (𝑔 = ∅ → (𝑀 Σg 𝑔) = (𝑀 Σg ∅))
32neeq1d 2999 . . . 4 (𝑔 = ∅ → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg ∅) ≠ 0 ))
43imbi2d 340 . . 3 (𝑔 = ∅ → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg ∅) ≠ 0 )))
5 oveq2 7440 . . . . 5 (𝑔 = 𝑓 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝑓))
65neeq1d 2999 . . . 4 (𝑔 = 𝑓 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝑓) ≠ 0 ))
76imbi2d 340 . . 3 (𝑔 = 𝑓 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝑓) ≠ 0 )))
8 oveq2 7440 . . . . 5 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → (𝑀 Σg 𝑔) = (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)))
98neeq1d 2999 . . . 4 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
109imbi2d 340 . . 3 (𝑔 = (𝑓 ++ ⟨“𝑥”⟩) → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
11 oveq2 7440 . . . . 5 (𝑔 = 𝐹 → (𝑀 Σg 𝑔) = (𝑀 Σg 𝐹))
1211neeq1d 2999 . . . 4 (𝑔 = 𝐹 → ((𝑀 Σg 𝑔) ≠ 0 ↔ (𝑀 Σg 𝐹) ≠ 0 ))
1312imbi2d 340 . . 3 (𝑔 = 𝐹 → ((𝜑 → (𝑀 Σg 𝑔) ≠ 0 ) ↔ (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )))
14 domnprodn0.2 . . . . . . 7 𝑀 = (mulGrp‘𝑅)
15 eqid 2736 . . . . . . 7 (1r𝑅) = (1r𝑅)
1614, 15ringidval 20181 . . . . . 6 (1r𝑅) = (0g𝑀)
1716gsum0 18698 . . . . 5 (𝑀 Σg ∅) = (1r𝑅)
1817a1i 11 . . . 4 (𝜑 → (𝑀 Σg ∅) = (1r𝑅))
19 domnprodn0.4 . . . . 5 (𝜑𝑅 ∈ Domn)
20 domnnzr 20707 . . . . 5 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
21 domnprodn0.3 . . . . . 6 0 = (0g𝑅)
2215, 21nzrnz 20516 . . . . 5 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
2319, 20, 223syl 18 . . . 4 (𝜑 → (1r𝑅) ≠ 0 )
2418, 23eqnetrd 3007 . . 3 (𝜑 → (𝑀 Σg ∅) ≠ 0 )
25 domnring 20708 . . . . . . . . . . 11 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
2614ringmgp 20237 . . . . . . . . . . 11 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
2719, 25, 263syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ Mnd)
2827ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑀 ∈ Mnd)
29 difssd 4136 . . . . . . . . . . . 12 (𝜑 → (𝐵 ∖ { 0 }) ⊆ 𝐵)
30 sswrd 14561 . . . . . . . . . . . 12 ((𝐵 ∖ { 0 }) ⊆ 𝐵 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3129, 30syl 17 . . . . . . . . . . 11 (𝜑 → Word (𝐵 ∖ { 0 }) ⊆ Word 𝐵)
3231sselda 3982 . . . . . . . . . 10 ((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) → 𝑓 ∈ Word 𝐵)
3332ad2antrr 726 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑓 ∈ Word 𝐵)
34 simplr 768 . . . . . . . . . 10 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥 ∈ (𝐵 ∖ { 0 }))
3534eldifad 3962 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥𝐵)
36 domnprodn0.1 . . . . . . . . . . 11 𝐵 = (Base‘𝑅)
3714, 36mgpbas 20143 . . . . . . . . . 10 𝐵 = (Base‘𝑀)
38 eqid 2736 . . . . . . . . . . 11 (.r𝑅) = (.r𝑅)
3914, 38mgpplusg 20142 . . . . . . . . . 10 (.r𝑅) = (+g𝑀)
4037, 39gsumccatsn 18857 . . . . . . . . 9 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵𝑥𝐵) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4128, 33, 35, 40syl3anc 1372 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) = ((𝑀 Σg 𝑓)(.r𝑅)𝑥))
4219ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑅 ∈ Domn)
4337gsumwcl 18853 . . . . . . . . . 10 ((𝑀 ∈ Mnd ∧ 𝑓 ∈ Word 𝐵) → (𝑀 Σg 𝑓) ∈ 𝐵)
4428, 33, 43syl2anc 584 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ∈ 𝐵)
45 simpr 484 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg 𝑓) ≠ 0 )
46 eldifsni 4789 . . . . . . . . . 10 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
4734, 46syl 17 . . . . . . . . 9 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → 𝑥0 )
4836, 38, 21domnmuln0 20710 . . . . . . . . 9 ((𝑅 ∈ Domn ∧ ((𝑀 Σg 𝑓) ∈ 𝐵 ∧ (𝑀 Σg 𝑓) ≠ 0 ) ∧ (𝑥𝐵𝑥0 )) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
4942, 44, 45, 35, 47, 48syl122anc 1380 . . . . . . . 8 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → ((𝑀 Σg 𝑓)(.r𝑅)𝑥) ≠ 0 )
5041, 49eqnetrd 3007 . . . . . . 7 ((((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) ∧ (𝑀 Σg 𝑓) ≠ 0 ) → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )
5150ex 412 . . . . . 6 (((𝜑𝑓 ∈ Word (𝐵 ∖ { 0 })) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5251anasss 466 . . . . 5 ((𝜑 ∧ (𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 }))) → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 ))
5352expcom 413 . . . 4 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝜑 → ((𝑀 Σg 𝑓) ≠ 0 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
5453a2d 29 . . 3 ((𝑓 ∈ Word (𝐵 ∖ { 0 }) ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → ((𝜑 → (𝑀 Σg 𝑓) ≠ 0 ) → (𝜑 → (𝑀 Σg (𝑓 ++ ⟨“𝑥”⟩)) ≠ 0 )))
554, 7, 10, 13, 24, 54wrdind 14761 . 2 (𝐹 ∈ Word (𝐵 ∖ { 0 }) → (𝜑 → (𝑀 Σg 𝐹) ≠ 0 ))
561, 55mpcom 38 1 (𝜑 → (𝑀 Σg 𝐹) ≠ 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  cdif 3947  wss 3950  c0 4332  {csn 4625  cfv 6560  (class class class)co 7432  Word cword 14553   ++ cconcat 14609  ⟨“cs1 14634  Basecbs 17248  .rcmulr 17299  0gc0g 17485   Σg cgsu 17486  Mndcmnd 18748  mulGrpcmgp 20138  1rcur 20179  Ringcrg 20231  NzRingcnzr 20513  Domncdomn 20693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-xnn0 12602  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-word 14554  df-lsw 14602  df-concat 14610  df-s1 14635  df-substr 14680  df-pfx 14710  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-nzr 20514  df-domn 20696
This theorem is referenced by:  dfufd2lem  33578
  Copyright terms: Public domain W3C validator