MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a1 Structured version   Visualization version   GIF version

Theorem 2lgslem1a1 27327
Description: Lemma 1 for 2lgslem1a 27329. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Distinct variable group:   𝑃,𝑖

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 nnrp 12902 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21adantr 480 . . . . 5 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
3 elfzelz 13424 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
4 zre 12472 . . . . . . 7 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
5 2re 12199 . . . . . . . 8 2 ∈ ℝ
65a1i 11 . . . . . . 7 (𝑖 ∈ ℤ → 2 ∈ ℝ)
74, 6remulcld 11142 . . . . . 6 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℝ)
83, 7syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → (𝑖 · 2) ∈ ℝ)
92, 8anim12ci 614 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
10 elfznn 13453 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℕ)
11 nnre 12132 . . . . . . 7 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
12 nnnn0 12388 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
1312nn0ge0d 12445 . . . . . . 7 (𝑖 ∈ ℕ → 0 ≤ 𝑖)
14 0le2 12227 . . . . . . . . 9 0 ≤ 2
155, 14pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 ≤ 2)
1615a1i 11 . . . . . . 7 (𝑖 ∈ ℕ → (2 ∈ ℝ ∧ 0 ≤ 2))
17 mulge0 11635 . . . . . . 7 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → 0 ≤ (𝑖 · 2))
1811, 13, 16, 17syl21anc 837 . . . . . 6 (𝑖 ∈ ℕ → 0 ≤ (𝑖 · 2))
1910, 18syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 0 ≤ (𝑖 · 2))
2019adantl 481 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑖 · 2))
21 elfz2 13414 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) ↔ ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2243ad2ant3 1135 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℝ)
23 zre 12472 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℤ → ((𝑃 − 1) / 2) ∈ ℝ)
24233ad2ant2 1134 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℝ)
25 2pos 12228 . . . . . . . . . . . 12 0 < 2
265, 25pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
2726a1i 11 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
28 lemul1 11973 . . . . . . . . . 10 ((𝑖 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
2922, 24, 27, 28syl3anc 1373 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
30 nncn 12133 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
31 peano2cnm 11427 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℂ)
33 2cnd 12203 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ∈ ℂ)
34 2ne0 12229 . . . . . . . . . . . . . . . . 17 2 ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ≠ 0)
3632, 33, 35divcan1d 11898 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3837adantl 481 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3938breq2d 5101 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
40 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
41 2z 12504 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 2 ∈ ℤ)
4340, 42zmulcld 12583 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℤ)
44433ad2ant3 1135 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 · 2) ∈ ℤ)
45 nnz 12489 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
4645adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℤ)
47 zltlem1 12525 . . . . . . . . . . . . . 14 (((𝑖 · 2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4844, 46, 47syl2an 596 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4948biimprd 248 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (𝑃 − 1) → (𝑖 · 2) < 𝑃))
5039, 49sylbid 240 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃))
5150ex 412 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃)))
5251com23 86 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5329, 52sylbid 240 . . . . . . . 8 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5453a1d 25 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (1 ≤ 𝑖 → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))))
5554imp32 418 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5621, 55sylbi 217 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5756impcom 407 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) < 𝑃)
58 modid 13800 . . . 4 ((((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑖 · 2) ∧ (𝑖 · 2) < 𝑃)) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
599, 20, 57, 58syl12anc 836 . . 3 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
6059eqcomd 2737 . 2 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
6160ralrimiva 3124 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047   class class class wbr 5089  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  cz 12468  +crp 12890  ...cfz 13407   mod cmo 13773  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fl 13696  df-mod 13774
This theorem is referenced by:  2lgslem1a  27329
  Copyright terms: Public domain W3C validator