MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a1 Structured version   Visualization version   GIF version

Theorem 2lgslem1a1 27357
Description: Lemma 1 for 2lgslem1a 27359. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Distinct variable group:   𝑃,𝑖

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 nnrp 13025 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21adantr 480 . . . . 5 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
3 elfzelz 13546 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
4 zre 12597 . . . . . . 7 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
5 2re 12319 . . . . . . . 8 2 ∈ ℝ
65a1i 11 . . . . . . 7 (𝑖 ∈ ℤ → 2 ∈ ℝ)
74, 6remulcld 11270 . . . . . 6 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℝ)
83, 7syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → (𝑖 · 2) ∈ ℝ)
92, 8anim12ci 614 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
10 elfznn 13575 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℕ)
11 nnre 12252 . . . . . . 7 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
12 nnnn0 12513 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
1312nn0ge0d 12570 . . . . . . 7 (𝑖 ∈ ℕ → 0 ≤ 𝑖)
14 0le2 12347 . . . . . . . . 9 0 ≤ 2
155, 14pm3.2i 470 . . . . . . . 8 (2 ∈ ℝ ∧ 0 ≤ 2)
1615a1i 11 . . . . . . 7 (𝑖 ∈ ℕ → (2 ∈ ℝ ∧ 0 ≤ 2))
17 mulge0 11760 . . . . . . 7 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → 0 ≤ (𝑖 · 2))
1811, 13, 16, 17syl21anc 837 . . . . . 6 (𝑖 ∈ ℕ → 0 ≤ (𝑖 · 2))
1910, 18syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 0 ≤ (𝑖 · 2))
2019adantl 481 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑖 · 2))
21 elfz2 13536 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) ↔ ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2243ad2ant3 1135 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℝ)
23 zre 12597 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℤ → ((𝑃 − 1) / 2) ∈ ℝ)
24233ad2ant2 1134 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℝ)
25 2pos 12348 . . . . . . . . . . . 12 0 < 2
265, 25pm3.2i 470 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
2726a1i 11 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
28 lemul1 12098 . . . . . . . . . 10 ((𝑖 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
2922, 24, 27, 28syl3anc 1373 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
30 nncn 12253 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
31 peano2cnm 11554 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℂ)
33 2cnd 12323 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ∈ ℂ)
34 2ne0 12349 . . . . . . . . . . . . . . . . 17 2 ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ≠ 0)
3632, 33, 35divcan1d 12023 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3736adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3837adantl 481 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3938breq2d 5136 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
40 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
41 2z 12629 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 2 ∈ ℤ)
4340, 42zmulcld 12708 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℤ)
44433ad2ant3 1135 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 · 2) ∈ ℤ)
45 nnz 12614 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
4645adantr 480 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℤ)
47 zltlem1 12650 . . . . . . . . . . . . . 14 (((𝑖 · 2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4844, 46, 47syl2an 596 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4948biimprd 248 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (𝑃 − 1) → (𝑖 · 2) < 𝑃))
5039, 49sylbid 240 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃))
5150ex 412 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃)))
5251com23 86 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5329, 52sylbid 240 . . . . . . . 8 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5453a1d 25 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (1 ≤ 𝑖 → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))))
5554imp32 418 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5621, 55sylbi 217 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5756impcom 407 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) < 𝑃)
58 modid 13918 . . . 4 ((((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑖 · 2) ∧ (𝑖 · 2) < 𝑃)) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
599, 20, 57, 58syl12anc 836 . . 3 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
6059eqcomd 2742 . 2 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
6160ralrimiva 3133 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052   class class class wbr 5124  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  cn 12245  2c2 12300  cz 12593  +crp 13013  ...cfz 13529   mod cmo 13891  cdvds 16277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892
This theorem is referenced by:  2lgslem1a  27359
  Copyright terms: Public domain W3C validator