MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a1 Structured version   Visualization version   GIF version

Theorem 2lgslem1a1 26537
Description: Lemma 1 for 2lgslem1a 26539. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Distinct variable group:   𝑃,𝑖

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 nnrp 12741 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21adantr 481 . . . . 5 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
3 elfzelz 13256 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
4 zre 12323 . . . . . . 7 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
5 2re 12047 . . . . . . . 8 2 ∈ ℝ
65a1i 11 . . . . . . 7 (𝑖 ∈ ℤ → 2 ∈ ℝ)
74, 6remulcld 11005 . . . . . 6 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℝ)
83, 7syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → (𝑖 · 2) ∈ ℝ)
92, 8anim12ci 614 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
10 elfznn 13285 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℕ)
11 nnre 11980 . . . . . . 7 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
12 nnnn0 12240 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
1312nn0ge0d 12296 . . . . . . 7 (𝑖 ∈ ℕ → 0 ≤ 𝑖)
14 0le2 12075 . . . . . . . . 9 0 ≤ 2
155, 14pm3.2i 471 . . . . . . . 8 (2 ∈ ℝ ∧ 0 ≤ 2)
1615a1i 11 . . . . . . 7 (𝑖 ∈ ℕ → (2 ∈ ℝ ∧ 0 ≤ 2))
17 mulge0 11493 . . . . . . 7 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → 0 ≤ (𝑖 · 2))
1811, 13, 16, 17syl21anc 835 . . . . . 6 (𝑖 ∈ ℕ → 0 ≤ (𝑖 · 2))
1910, 18syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 0 ≤ (𝑖 · 2))
2019adantl 482 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑖 · 2))
21 elfz2 13246 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) ↔ ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2243ad2ant3 1134 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℝ)
23 zre 12323 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℤ → ((𝑃 − 1) / 2) ∈ ℝ)
24233ad2ant2 1133 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℝ)
25 2pos 12076 . . . . . . . . . . . 12 0 < 2
265, 25pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
2726a1i 11 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
28 lemul1 11827 . . . . . . . . . 10 ((𝑖 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
2922, 24, 27, 28syl3anc 1370 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
30 nncn 11981 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
31 peano2cnm 11287 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℂ)
33 2cnd 12051 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ∈ ℂ)
34 2ne0 12077 . . . . . . . . . . . . . . . . 17 2 ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ≠ 0)
3632, 33, 35divcan1d 11752 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3736adantr 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3837adantl 482 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3938breq2d 5086 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
40 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
41 2z 12352 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 2 ∈ ℤ)
4340, 42zmulcld 12432 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℤ)
44433ad2ant3 1134 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 · 2) ∈ ℤ)
45 nnz 12342 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
4645adantr 481 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℤ)
47 zltlem1 12373 . . . . . . . . . . . . . 14 (((𝑖 · 2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4844, 46, 47syl2an 596 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4948biimprd 247 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (𝑃 − 1) → (𝑖 · 2) < 𝑃))
5039, 49sylbid 239 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃))
5150ex 413 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃)))
5251com23 86 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5329, 52sylbid 239 . . . . . . . 8 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5453a1d 25 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (1 ≤ 𝑖 → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))))
5554imp32 419 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5621, 55sylbi 216 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5756impcom 408 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) < 𝑃)
58 modid 13616 . . . 4 ((((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑖 · 2) ∧ (𝑖 · 2) < 𝑃)) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
599, 20, 57, 58syl12anc 834 . . 3 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
6059eqcomd 2744 . 2 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
6160ralrimiva 3103 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cz 12319  +crp 12730  ...cfz 13239   mod cmo 13589  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fl 13512  df-mod 13590
This theorem is referenced by:  2lgslem1a  26539
  Copyright terms: Public domain W3C validator