Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1a1 Structured version   Visualization version   GIF version

Theorem 2lgslem1a1 25977
 Description: Lemma 1 for 2lgslem1a 25979. (Contributed by AV, 16-Jun-2021.)
Assertion
Ref Expression
2lgslem1a1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
Distinct variable group:   𝑃,𝑖

Proof of Theorem 2lgslem1a1
StepHypRef Expression
1 nnrp 12392 . . . . . 6 (𝑃 ∈ ℕ → 𝑃 ∈ ℝ+)
21adantr 484 . . . . 5 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℝ+)
3 elfzelz 12906 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℤ)
4 zre 11977 . . . . . . 7 (𝑖 ∈ ℤ → 𝑖 ∈ ℝ)
5 2re 11703 . . . . . . . 8 2 ∈ ℝ
65a1i 11 . . . . . . 7 (𝑖 ∈ ℤ → 2 ∈ ℝ)
74, 6remulcld 10664 . . . . . 6 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℝ)
83, 7syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → (𝑖 · 2) ∈ ℝ)
92, 8anim12ci 616 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+))
10 elfznn 12935 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 𝑖 ∈ ℕ)
11 nnre 11636 . . . . . . 7 (𝑖 ∈ ℕ → 𝑖 ∈ ℝ)
12 nnnn0 11896 . . . . . . . 8 (𝑖 ∈ ℕ → 𝑖 ∈ ℕ0)
1312nn0ge0d 11950 . . . . . . 7 (𝑖 ∈ ℕ → 0 ≤ 𝑖)
14 0le2 11731 . . . . . . . . 9 0 ≤ 2
155, 14pm3.2i 474 . . . . . . . 8 (2 ∈ ℝ ∧ 0 ≤ 2)
1615a1i 11 . . . . . . 7 (𝑖 ∈ ℕ → (2 ∈ ℝ ∧ 0 ≤ 2))
17 mulge0 11151 . . . . . . 7 (((𝑖 ∈ ℝ ∧ 0 ≤ 𝑖) ∧ (2 ∈ ℝ ∧ 0 ≤ 2)) → 0 ≤ (𝑖 · 2))
1811, 13, 16, 17syl21anc 836 . . . . . 6 (𝑖 ∈ ℕ → 0 ≤ (𝑖 · 2))
1910, 18syl 17 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → 0 ≤ (𝑖 · 2))
2019adantl 485 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → 0 ≤ (𝑖 · 2))
21 elfz2 12896 . . . . . 6 (𝑖 ∈ (1...((𝑃 − 1) / 2)) ↔ ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))))
2243ad2ant3 1132 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℝ)
23 zre 11977 . . . . . . . . . . 11 (((𝑃 − 1) / 2) ∈ ℤ → ((𝑃 − 1) / 2) ∈ ℝ)
24233ad2ant2 1131 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 − 1) / 2) ∈ ℝ)
25 2pos 11732 . . . . . . . . . . . 12 0 < 2
265, 25pm3.2i 474 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
2726a1i 11 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (2 ∈ ℝ ∧ 0 < 2))
28 lemul1 11485 . . . . . . . . . 10 ((𝑖 ∈ ℝ ∧ ((𝑃 − 1) / 2) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
2922, 24, 27, 28syl3anc 1368 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) ↔ (𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2)))
30 nncn 11637 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℕ → 𝑃 ∈ ℂ)
31 peano2cnm 10945 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℂ → (𝑃 − 1) ∈ ℂ)
3230, 31syl 17 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → (𝑃 − 1) ∈ ℂ)
33 2cnd 11707 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ∈ ℂ)
34 2ne0 11733 . . . . . . . . . . . . . . . . 17 2 ≠ 0
3534a1i 11 . . . . . . . . . . . . . . . 16 (𝑃 ∈ ℕ → 2 ≠ 0)
3632, 33, 35divcan1d 11410 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3736adantr 484 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3837adantl 485 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → (((𝑃 − 1) / 2) · 2) = (𝑃 − 1))
3938breq2d 5045 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
40 id 22 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 𝑖 ∈ ℤ)
41 2z 12006 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
4241a1i 11 . . . . . . . . . . . . . . . 16 (𝑖 ∈ ℤ → 2 ∈ ℤ)
4340, 42zmulcld 12085 . . . . . . . . . . . . . . 15 (𝑖 ∈ ℤ → (𝑖 · 2) ∈ ℤ)
44433ad2ant3 1132 . . . . . . . . . . . . . 14 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 · 2) ∈ ℤ)
45 nnz 11996 . . . . . . . . . . . . . . 15 (𝑃 ∈ ℕ → 𝑃 ∈ ℤ)
4645adantr 484 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → 𝑃 ∈ ℤ)
47 zltlem1 12027 . . . . . . . . . . . . . 14 (((𝑖 · 2) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4844, 46, 47syl2an 598 . . . . . . . . . . . . 13 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) < 𝑃 ↔ (𝑖 · 2) ≤ (𝑃 − 1)))
4948biimprd 251 . . . . . . . . . . . 12 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (𝑃 − 1) → (𝑖 · 2) < 𝑃))
5039, 49sylbid 243 . . . . . . . . . . 11 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃)) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃))
5150ex 416 . . . . . . . . . 10 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → (𝑖 · 2) < 𝑃)))
5251com23 86 . . . . . . . . 9 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → ((𝑖 · 2) ≤ (((𝑃 − 1) / 2) · 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5329, 52sylbid 243 . . . . . . . 8 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃)))
5453a1d 25 . . . . . . 7 ((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) → (1 ≤ 𝑖 → (𝑖 ≤ ((𝑃 − 1) / 2) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))))
5554imp32 422 . . . . . 6 (((1 ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ 𝑖 ∈ ℤ) ∧ (1 ≤ 𝑖𝑖 ≤ ((𝑃 − 1) / 2))) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5621, 55sylbi 220 . . . . 5 (𝑖 ∈ (1...((𝑃 − 1) / 2)) → ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → (𝑖 · 2) < 𝑃))
5756impcom 411 . . . 4 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) < 𝑃)
58 modid 13263 . . . 4 ((((𝑖 · 2) ∈ ℝ ∧ 𝑃 ∈ ℝ+) ∧ (0 ≤ (𝑖 · 2) ∧ (𝑖 · 2) < 𝑃)) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
599, 20, 57, 58syl12anc 835 . . 3 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → ((𝑖 · 2) mod 𝑃) = (𝑖 · 2))
6059eqcomd 2807 . 2 (((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) ∧ 𝑖 ∈ (1...((𝑃 − 1) / 2))) → (𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
6160ralrimiva 3152 1 ((𝑃 ∈ ℕ ∧ ¬ 2 ∥ 𝑃) → ∀𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑖 · 2) = ((𝑖 · 2) mod 𝑃))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  ∀wral 3109   class class class wbr 5033  (class class class)co 7139  ℂcc 10528  ℝcr 10529  0cc0 10530  1c1 10531   · cmul 10535   < clt 10668   ≤ cle 10669   − cmin 10863   / cdiv 11290  ℕcn 11629  2c2 11684  ℤcz 11973  ℝ+crp 12381  ...cfz 12889   mod cmo 13236   ∥ cdvds 15603 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607  ax-pre-sup 10608 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-inf 8895  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fl 13161  df-mod 13237 This theorem is referenced by:  2lgslem1a  25979
 Copyright terms: Public domain W3C validator