MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem1 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem1 14746
Description: Lemma 1 for pfxccatin12 14751. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
pfxccatin12lem1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))

Proof of Theorem pfxccatin12lem1
StepHypRef Expression
1 elfz2 13531 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12634 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1130 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 480 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 217 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 480 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13785 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfz2nn0 13635 . . . . . . . 8 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10 nn0cn 12511 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 nn0cn 12511 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
12 elfzelz 13541 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
13 zcn 12593 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 subcl 11481 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1615addridd 11435 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀) + 0) = (𝐿𝑀))
1716eqcomd 2741 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) = ((𝐿𝑀) + 0))
1817adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐿𝑀) = ((𝐿𝑀) + 0))
19 simprr 772 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝐿 ∈ ℂ)
20 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → 𝑀 ∈ ℂ)
2120adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑀 ∈ ℂ)
22 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑁 ∈ ℂ)
2319, 21, 22npncan3d 11630 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
2423eqcomd 2741 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝑀) = ((𝐿𝑀) + (𝑁𝐿)))
2518, 24oveq12d 7423 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
2625ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2712, 13, 263syl 18 . . . . . . . . . . 11 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2827com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2910, 11, 28syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
30293adant3 1132 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
319, 30sylbi 217 . . . . . . 7 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3231imp 406 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
3332eleq2d 2820 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3433biimpa 476 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
35 0zd 12600 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 0 ∈ ℤ)
36 elfz2 13531 . . . . . . . 8 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
37 zsubcl 12634 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
3837ancoms 458 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
39383adant2 1131 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
4039adantr 480 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁𝐿) ∈ ℤ)
4136, 40sylbi 217 . . . . . . 7 (𝑁 ∈ (𝐿...𝑋) → (𝑁𝐿) ∈ ℤ)
4241adantl 481 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁𝐿) ∈ ℤ)
436, 35, 423jca 1128 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
4443adantr 480 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
45 fzosubel2 13741 . . . 4 ((𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))) ∧ ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4634, 44, 45syl2anc 584 . . 3 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4746ex 412 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
488, 47syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119  (class class class)co 7405  cc 11127  0cc0 11129   + caddc 11132  cle 11270  cmin 11466  0cn0 12501  cz 12588  ...cfz 13524  ..^cfzo 13671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-fz 13525  df-fzo 13672
This theorem is referenced by:  pfxccatin12lem2  14749
  Copyright terms: Public domain W3C validator