MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem1 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem1 14616
Description: Lemma 1 for pfxccatin12 14621. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
pfxccatin12lem1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))

Proof of Theorem pfxccatin12lem1
StepHypRef Expression
1 elfz2 13431 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12545 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1130 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 481 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 216 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 481 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13674 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfz2nn0 13532 . . . . . . . 8 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10 nn0cn 12423 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 nn0cn 12423 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
12 elfzelz 13441 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
13 zcn 12504 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 subcl 11400 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514ancoms 459 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1615addid1d 11355 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀) + 0) = (𝐿𝑀))
1716eqcomd 2742 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) = ((𝐿𝑀) + 0))
1817adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐿𝑀) = ((𝐿𝑀) + 0))
19 simprr 771 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝐿 ∈ ℂ)
20 simpl 483 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → 𝑀 ∈ ℂ)
2120adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑀 ∈ ℂ)
22 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑁 ∈ ℂ)
2319, 21, 22npncan3d 11548 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
2423eqcomd 2742 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝑀) = ((𝐿𝑀) + (𝑁𝐿)))
2518, 24oveq12d 7375 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
2625ex 413 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2712, 13, 263syl 18 . . . . . . . . . . 11 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2827com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2910, 11, 28syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
30293adant3 1132 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
319, 30sylbi 216 . . . . . . 7 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3231imp 407 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
3332eleq2d 2823 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3433biimpa 477 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
35 0zd 12511 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 0 ∈ ℤ)
36 elfz2 13431 . . . . . . . 8 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
37 zsubcl 12545 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
3837ancoms 459 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
39383adant2 1131 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
4039adantr 481 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁𝐿) ∈ ℤ)
4136, 40sylbi 216 . . . . . . 7 (𝑁 ∈ (𝐿...𝑋) → (𝑁𝐿) ∈ ℤ)
4241adantl 482 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁𝐿) ∈ ℤ)
436, 35, 423jca 1128 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
4443adantr 481 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
45 fzosubel2 13632 . . . 4 ((𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))) ∧ ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4634, 44, 45syl2anc 584 . . 3 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4746ex 413 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
488, 47syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054  cle 11190  cmin 11385  0cn0 12413  cz 12499  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568
This theorem is referenced by:  pfxccatin12lem2  14619
  Copyright terms: Public domain W3C validator