MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxccatin12lem1 Structured version   Visualization version   GIF version

Theorem pfxccatin12lem1 14635
Description: Lemma 1 for pfxccatin12 14640. (Contributed by AV, 30-Mar-2018.) (Revised by AV, 9-May-2020.)
Assertion
Ref Expression
pfxccatin12lem1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))

Proof of Theorem pfxccatin12lem1
StepHypRef Expression
1 elfz2 13414 . . . . 5 (𝑀 ∈ (0...𝐿) ↔ ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)))
2 zsubcl 12514 . . . . . . 7 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
323adant1 1130 . . . . . 6 ((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐿𝑀) ∈ ℤ)
43adantr 480 . . . . 5 (((0 ∈ ℤ ∧ 𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (0 ≤ 𝑀𝑀𝐿)) → (𝐿𝑀) ∈ ℤ)
51, 4sylbi 217 . . . 4 (𝑀 ∈ (0...𝐿) → (𝐿𝑀) ∈ ℤ)
65adantr 480 . . 3 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐿𝑀) ∈ ℤ)
7 elfzonelfzo 13669 . . 3 ((𝐿𝑀) ∈ ℤ → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
86, 7syl 17 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))))
9 elfz2nn0 13518 . . . . . . . 8 (𝑀 ∈ (0...𝐿) ↔ (𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿))
10 nn0cn 12391 . . . . . . . . . 10 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
11 nn0cn 12391 . . . . . . . . . 10 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
12 elfzelz 13424 . . . . . . . . . . . 12 (𝑁 ∈ (𝐿...𝑋) → 𝑁 ∈ ℤ)
13 zcn 12473 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
14 subcl 11359 . . . . . . . . . . . . . . . . . 18 ((𝐿 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1514ancoms 458 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) ∈ ℂ)
1615addridd 11313 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀) + 0) = (𝐿𝑀))
1716eqcomd 2737 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝐿𝑀) = ((𝐿𝑀) + 0))
1817adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝐿𝑀) = ((𝐿𝑀) + 0))
19 simprr 772 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝐿 ∈ ℂ)
20 simpl 482 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → 𝑀 ∈ ℂ)
2120adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑀 ∈ ℂ)
22 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → 𝑁 ∈ ℂ)
2319, 21, 22npncan3d 11508 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀) + (𝑁𝐿)) = (𝑁𝑀))
2423eqcomd 2737 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → (𝑁𝑀) = ((𝐿𝑀) + (𝑁𝐿)))
2518, 24oveq12d 7364 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
2625ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2712, 13, 263syl 18 . . . . . . . . . . 11 (𝑁 ∈ (𝐿...𝑋) → ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2827com12 32 . . . . . . . . . 10 ((𝑀 ∈ ℂ ∧ 𝐿 ∈ ℂ) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
2910, 11, 28syl2an 596 . . . . . . . . 9 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
30293adant3 1132 . . . . . . . 8 ((𝑀 ∈ ℕ0𝐿 ∈ ℕ0𝑀𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
319, 30sylbi 217 . . . . . . 7 (𝑀 ∈ (0...𝐿) → (𝑁 ∈ (𝐿...𝑋) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3231imp 406 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀)..^(𝑁𝑀)) = (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
3332eleq2d 2817 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) ↔ 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿)))))
3433biimpa 476 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → 𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))))
35 0zd 12480 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → 0 ∈ ℤ)
36 elfz2 13414 . . . . . . . 8 (𝑁 ∈ (𝐿...𝑋) ↔ ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)))
37 zsubcl 12514 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
3837ancoms 458 . . . . . . . . . 10 ((𝐿 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
39383adant2 1131 . . . . . . . . 9 ((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
4039adantr 480 . . . . . . . 8 (((𝐿 ∈ ℤ ∧ 𝑋 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐿𝑁𝑁𝑋)) → (𝑁𝐿) ∈ ℤ)
4136, 40sylbi 217 . . . . . . 7 (𝑁 ∈ (𝐿...𝑋) → (𝑁𝐿) ∈ ℤ)
4241adantl 481 . . . . . 6 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝑁𝐿) ∈ ℤ)
436, 35, 423jca 1128 . . . . 5 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
4443adantr 480 . . . 4 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ))
45 fzosubel2 13625 . . . 4 ((𝐾 ∈ (((𝐿𝑀) + 0)..^((𝐿𝑀) + (𝑁𝐿))) ∧ ((𝐿𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ (𝑁𝐿) ∈ ℤ)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4634, 44, 45syl2anc 584 . . 3 (((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) ∧ 𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿)))
4746ex 412 . 2 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → (𝐾 ∈ ((𝐿𝑀)..^(𝑁𝑀)) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
488, 47syld 47 1 ((𝑀 ∈ (0...𝐿) ∧ 𝑁 ∈ (𝐿...𝑋)) → ((𝐾 ∈ (0..^(𝑁𝑀)) ∧ ¬ 𝐾 ∈ (0..^(𝐿𝑀))) → (𝐾 − (𝐿𝑀)) ∈ (0..^(𝑁𝐿))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089  (class class class)co 7346  cc 11004  0cc0 11006   + caddc 11009  cle 11147  cmin 11344  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555
This theorem is referenced by:  pfxccatin12lem2  14638
  Copyright terms: Public domain W3C validator