MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0fzdiffz0 Structured version   Visualization version   GIF version

Theorem fz0fzdiffz0 13598
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 13595 . . 3 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (0...𝑁))
2 elfzle1 13488 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
32adantl 481 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀𝐾)
43adantl 481 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑀𝐾)
5 elfznn0 13581 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
65adantr 480 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ0)
7 elfznn0 13581 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
8 nn0sub 12492 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
96, 7, 8syl2anr 597 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
104, 9mpbid 232 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ∈ ℕ0)
11 elfz3nn0 13582 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
1211adantr 480 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑁 ∈ ℕ0)
13 elfz2nn0 13579 . . . . . . 7 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
14 elfz2 13475 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
15 zsubcl 12575 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
1615zred 12638 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
1716ancoms 458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
18173adant2 1131 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
19 zre 12533 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
20193ad2ant3 1135 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
21 zre 12533 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22213ad2ant2 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
2318, 20, 223jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2423adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
26 nn0ge0 12467 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2726adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
28 nn0re 12451 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
29 subge02 11694 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3020, 28, 29syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3127, 30mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (𝐾𝑀) ≤ 𝐾)
3231anim1i 615 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ≤ 𝐾𝐾𝑁))
33 letr 11268 . . . . . . . . . . . . . . . . 17 (((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝑀) ≤ 𝐾𝐾𝑁) → (𝐾𝑀) ≤ 𝑁))
3425, 32, 33sylc 65 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → (𝐾𝑀) ≤ 𝑁)
3534exp31 419 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁)))
3635a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁))))
3736com14 96 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3837adantl 481 . . . . . . . . . . . 12 ((𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3938impcom 407 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4014, 39sylbi 217 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4140com13 88 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁)))
4241impcom 407 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
43423adant3 1132 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4413, 43sylbi 217 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4544imp 406 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ≤ 𝑁)
4645adantl 481 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ≤ 𝑁)
4710, 12, 463jca 1128 . . 3 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
481, 47mpancom 688 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
49 elfz2nn0 13579 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
5048, 49sylibr 234 1 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068  cle 11209  cmin 11405  0cn0 12442  cz 12529  ...cfz 13468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469
This theorem is referenced by:  pfxtrcfv  14658  chfacfpmmulgsum2  22752
  Copyright terms: Public domain W3C validator