MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0fzdiffz0 Structured version   Visualization version   GIF version

Theorem fz0fzdiffz0 13365
Description: The difference of an integer in a finite set of sequential nonnegative integers and and an integer of a finite set of sequential integers with the same upper bound and the nonnegative integer as lower bound is a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 6-Jun-2018.)
Assertion
Ref Expression
fz0fzdiffz0 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))

Proof of Theorem fz0fzdiffz0
StepHypRef Expression
1 fz0fzelfz0 13362 . . 3 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝐾 ∈ (0...𝑁))
2 elfzle1 13259 . . . . . . 7 (𝐾 ∈ (𝑀...𝑁) → 𝑀𝐾)
32adantl 482 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀𝐾)
43adantl 482 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑀𝐾)
5 elfznn0 13349 . . . . . . 7 (𝑀 ∈ (0...𝑁) → 𝑀 ∈ ℕ0)
65adantr 481 . . . . . 6 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℕ0)
7 elfznn0 13349 . . . . . 6 (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℕ0)
8 nn0sub 12283 . . . . . 6 ((𝑀 ∈ ℕ0𝐾 ∈ ℕ0) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
96, 7, 8syl2anr 597 . . . . 5 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝑀𝐾 ↔ (𝐾𝑀) ∈ ℕ0))
104, 9mpbid 231 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ∈ ℕ0)
11 elfz3nn0 13350 . . . . 5 (𝐾 ∈ (0...𝑁) → 𝑁 ∈ ℕ0)
1211adantr 481 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → 𝑁 ∈ ℕ0)
13 elfz2nn0 13347 . . . . . . 7 (𝑀 ∈ (0...𝑁) ↔ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁))
14 elfz2 13246 . . . . . . . . . . 11 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
15 zsubcl 12362 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℤ)
1615zred 12426 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
1716ancoms 459 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
18173adant2 1130 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐾𝑀) ∈ ℝ)
19 zre 12323 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
20193ad2ant3 1134 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝐾 ∈ ℝ)
21 zre 12323 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
22213ad2ant2 1133 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → 𝑁 ∈ ℝ)
2318, 20, 223jca 1127 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2423adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
2524adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
26 nn0ge0 12258 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
2726adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
28 nn0re 12242 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
29 subge02 11491 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3020, 28, 29syl2an 596 . . . . . . . . . . . . . . . . . . 19 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (0 ≤ 𝑀 ↔ (𝐾𝑀) ≤ 𝐾))
3127, 30mpbid 231 . . . . . . . . . . . . . . . . . 18 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) → (𝐾𝑀) ≤ 𝐾)
3231anim1i 615 . . . . . . . . . . . . . . . . 17 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → ((𝐾𝑀) ≤ 𝐾𝐾𝑁))
33 letr 11069 . . . . . . . . . . . . . . . . 17 (((𝐾𝑀) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝑀) ≤ 𝐾𝐾𝑁) → (𝐾𝑀) ≤ 𝑁))
3425, 32, 33sylc 65 . . . . . . . . . . . . . . . 16 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ 𝑀 ∈ ℕ0) ∧ 𝐾𝑁) → (𝐾𝑀) ≤ 𝑁)
3534exp31 420 . . . . . . . . . . . . . . 15 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁)))
3635a1i 11 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝐾𝑁 → (𝐾𝑀) ≤ 𝑁))))
3736com14 96 . . . . . . . . . . . . 13 (𝐾𝑁 → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3837adantl 482 . . . . . . . . . . . 12 ((𝑀𝐾𝐾𝑁) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁))))
3938impcom 408 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4014, 39sylbi 216 . . . . . . . . . 10 (𝐾 ∈ (𝑀...𝑁) → (𝑀 ∈ ℕ0 → (𝑁 ∈ ℕ0 → (𝐾𝑀) ≤ 𝑁)))
4140com13 88 . . . . . . . . 9 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁)))
4241impcom 408 . . . . . . . 8 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
43423adant3 1131 . . . . . . 7 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0𝑀𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4413, 43sylbi 216 . . . . . 6 (𝑀 ∈ (0...𝑁) → (𝐾 ∈ (𝑀...𝑁) → (𝐾𝑀) ≤ 𝑁))
4544imp 407 . . . . 5 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ≤ 𝑁)
4645adantl 482 . . . 4 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → (𝐾𝑀) ≤ 𝑁)
4710, 12, 463jca 1127 . . 3 ((𝐾 ∈ (0...𝑁) ∧ (𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁))) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
481, 47mpancom 685 . 2 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
49 elfz2nn0 13347 . 2 ((𝐾𝑀) ∈ (0...𝑁) ↔ ((𝐾𝑀) ∈ ℕ0𝑁 ∈ ℕ0 ∧ (𝐾𝑀) ≤ 𝑁))
5048, 49sylibr 233 1 ((𝑀 ∈ (0...𝑁) ∧ 𝐾 ∈ (𝑀...𝑁)) → (𝐾𝑀) ∈ (0...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  cle 11010  cmin 11205  0cn0 12233  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  pfxtrcfv  14406  chfacfpmmulgsum2  22014
  Copyright terms: Public domain W3C validator