MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0fzelfz0 Structured version   Visualization version   GIF version

Theorem fz0fzelfz0 13547
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 13532 . . . 4 (𝑁 ∈ (0...𝑅) ↔ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅))
2 elfz2 13431 . . . . . 6 (𝑀 ∈ (𝑁...𝑅) ↔ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)))
3 simplr 767 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
4 0red 11158 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ∈ ℝ)
5 nn0re 12422 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑁 ∈ ℝ)
7 zre 12503 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
94, 6, 83jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
109adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
11 nn0ge0 12438 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1211adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ≤ 𝑁)
1312anim1i 615 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ≤ 𝑁𝑁𝑀))
14 letr 11249 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑀) → 0 ≤ 𝑀))
1510, 13, 14sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 0 ≤ 𝑀)
16 elnn0z 12512 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
173, 15, 16sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℕ0)
1817exp31 420 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℤ → (𝑁𝑀𝑀 ∈ ℕ0)))
1918com23 86 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
20193ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
2120com13 88 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑁𝑀 → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2221adantrd 492 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
23223ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2423imp 407 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0))
2524imp 407 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀 ∈ ℕ0)
26 simpr2 1195 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑅 ∈ ℕ0)
27 simplrr 776 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀𝑅)
2825, 26, 273jca 1128 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
2928ex 413 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
302, 29sylbi 216 . . . . 5 (𝑀 ∈ (𝑁...𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3130com12 32 . . . 4 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
321, 31sylbi 216 . . 3 (𝑁 ∈ (0...𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3332imp 407 . 2 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
34 elfz2nn0 13532 . 2 (𝑀 ∈ (0...𝑅) ↔ (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
3533, 34sylibr 233 1 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wcel 2106   class class class wbr 5105  (class class class)co 7357  cr 11050  0cc0 11051  cle 11190  0cn0 12413  cz 12499  ...cfz 13424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425
This theorem is referenced by:  fz0fzdiffz0  13550  fourierdlem15  44353
  Copyright terms: Public domain W3C validator