MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fz0fzelfz0 Structured version   Visualization version   GIF version

Theorem fz0fzelfz0 13534
Description: If a member of a finite set of sequential integers with a lower bound being a member of a finite set of sequential nonnegative integers with the same upper bound, this member is also a member of the finite set of sequential nonnegative integers. (Contributed by Alexander van der Vekens, 21-Apr-2018.)
Assertion
Ref Expression
fz0fzelfz0 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))

Proof of Theorem fz0fzelfz0
StepHypRef Expression
1 elfz2nn0 13518 . . . 4 (𝑁 ∈ (0...𝑅) ↔ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅))
2 elfz2 13414 . . . . . 6 (𝑀 ∈ (𝑁...𝑅) ↔ ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)))
3 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℤ)
4 0red 11115 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ∈ ℝ)
5 nn0re 12390 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑁 ∈ ℝ)
7 zre 12472 . . . . . . . . . . . . . . . . . . . . 21 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
87adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 𝑀 ∈ ℝ)
94, 6, 83jca 1128 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
109adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ))
11 nn0ge0 12406 . . . . . . . . . . . . . . . . . . . 20 (𝑁 ∈ ℕ0 → 0 ≤ 𝑁)
1211adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑁 ∈ ℕ0𝑀 ∈ ℤ) → 0 ≤ 𝑁)
1312anim1i 615 . . . . . . . . . . . . . . . . . 18 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → (0 ≤ 𝑁𝑁𝑀))
14 letr 11207 . . . . . . . . . . . . . . . . . 18 ((0 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → ((0 ≤ 𝑁𝑁𝑀) → 0 ≤ 𝑀))
1510, 13, 14sylc 65 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 0 ≤ 𝑀)
16 elnn0z 12481 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℤ ∧ 0 ≤ 𝑀))
173, 15, 16sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℕ0𝑀 ∈ ℤ) ∧ 𝑁𝑀) → 𝑀 ∈ ℕ0)
1817exp31 419 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℤ → (𝑁𝑀𝑀 ∈ ℕ0)))
1918com23 86 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ0 → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
20193ad2ant1 1133 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑁𝑀 → (𝑀 ∈ ℤ → 𝑀 ∈ ℕ0)))
2120com13 88 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → (𝑁𝑀 → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2221adantrd 491 . . . . . . . . . . 11 (𝑀 ∈ ℤ → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
23223ad2ant3 1135 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑀𝑀𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0)))
2423imp 406 . . . . . . . . 9 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → 𝑀 ∈ ℕ0))
2524imp 406 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀 ∈ ℕ0)
26 simpr2 1196 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑅 ∈ ℕ0)
27 simplrr 777 . . . . . . . 8 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → 𝑀𝑅)
2825, 26, 273jca 1128 . . . . . . 7 ((((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) ∧ (𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
2928ex 412 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑅 ∈ ℤ ∧ 𝑀 ∈ ℤ) ∧ (𝑁𝑀𝑀𝑅)) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
302, 29sylbi 217 . . . . 5 (𝑀 ∈ (𝑁...𝑅) → ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3130com12 32 . . . 4 ((𝑁 ∈ ℕ0𝑅 ∈ ℕ0𝑁𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
321, 31sylbi 217 . . 3 (𝑁 ∈ (0...𝑅) → (𝑀 ∈ (𝑁...𝑅) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅)))
3332imp 406 . 2 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
34 elfz2nn0 13518 . 2 (𝑀 ∈ (0...𝑅) ↔ (𝑀 ∈ ℕ0𝑅 ∈ ℕ0𝑀𝑅))
3533, 34sylibr 234 1 ((𝑁 ∈ (0...𝑅) ∧ 𝑀 ∈ (𝑁...𝑅)) → 𝑀 ∈ (0...𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  cle 11147  0cn0 12381  cz 12468  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408
This theorem is referenced by:  fz0fzdiffz0  13537  fourierdlem15  46219
  Copyright terms: Public domain W3C validator