Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem3 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem3 27589
 Description: Lemma for crctcshwlkn0 27598. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem3
StepHypRef Expression
1 crctcshwlkn0lem.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
2 breq1 5068 . . . 4 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
3 fvoveq1 7178 . . . 4 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
4 oveq1 7162 . . . . 5 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fvoveq1d 7177 . . . 4 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
62, 3, 5ifbieq12d 4493 . . 3 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
7 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
8 0zd 11992 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ∈ ℤ)
9 elfzoel2 13036 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
10 elfzoelz 13037 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
119, 10zsubcld 12091 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
1211peano2zd 12089 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
13 elfzo1 13086 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
14 nnre 11644 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
15 nnre 11644 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
16 posdif 11132 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
17 0red 10643 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
18 resubcl 10949 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
1918ancoms 461 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
20 ltle 10728 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2117, 19, 20syl2anc 586 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2219lep1d 11570 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
23 1red 10641 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℝ)
2419, 23readdcld 10669 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
25 letr 10733 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2617, 19, 24, 25syl3anc 1367 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2722, 26mpan2d 692 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2821, 27syld 47 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2916, 28sylbid 242 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
3014, 15, 29syl2an 597 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
31303impia 1113 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ ((𝑁𝑆) + 1))
3213, 31sylbi 219 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ≤ ((𝑁𝑆) + 1))
33 eluz2 12248 . . . . . . 7 (((𝑁𝑆) + 1) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ ((𝑁𝑆) + 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝑆) + 1)))
348, 12, 32, 33syl3anbrc 1339 . . . . . 6 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
357, 34syl 17 . . . . 5 (𝜑 → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
36 fzss1 12945 . . . . 5 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3735, 36syl 17 . . . 4 (𝜑 → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3837sselda 3966 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝐽 ∈ (0...𝑁))
39 fvex 6682 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
40 fvex 6682 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
4139, 40ifex 4514 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
4241a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
431, 6, 38, 42fvmptd3 6790 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
44 elfz2 12898 . . . . . 6 (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) ↔ ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)))
45 zre 11984 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℤ → 𝑆 ∈ ℝ)
46 zre 11984 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
47 zre 11984 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4846, 47anim12i 614 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ))
49 simprr 771 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑁 ∈ ℝ)
50 simpl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑆 ∈ ℝ)
5149, 50resubcld 11067 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) ∈ ℝ)
5251ltp1d 11569 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) < ((𝑁𝑆) + 1))
53 1red 10641 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 1 ∈ ℝ)
5451, 53readdcld 10669 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) + 1) ∈ ℝ)
55 simprl 769 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
56 ltletr 10731 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5751, 54, 55, 56syl3anc 1367 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5852, 57mpand 693 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → (𝑁𝑆) < 𝐽))
5951, 55ltnled 10786 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) < 𝐽 ↔ ¬ 𝐽 ≤ (𝑁𝑆)))
6058, 59sylibd 241 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6145, 48, 60syl2an 597 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6261expcom 416 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6362ancoms 461 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
64633adant1 1126 . . . . . . . . . . 11 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6510, 64syl5com 31 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6665com13 88 . . . . . . . . 9 (((𝑁𝑆) + 1) ≤ 𝐽 → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6766adantr 483 . . . . . . . 8 ((((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6867impcom 410 . . . . . . 7 (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
6968com12 32 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆)))
7044, 69syl5bi 244 . . . . 5 (𝑆 ∈ (1..^𝑁) → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
717, 70syl 17 . . . 4 (𝜑 → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7271imp 409 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆))
7372iffalsed 4477 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
7443, 73eqtrd 2856 1 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 398   ∧ w3a 1083   = wceq 1533   ∈ wcel 2110  Vcvv 3494   ⊆ wss 3935  ifcif 4466   class class class wbr 5065   ↦ cmpt 5145  ‘cfv 6354  (class class class)co 7155  ℝcr 10535  0cc0 10536  1c1 10537   + caddc 10539   < clt 10674   ≤ cle 10675   − cmin 10869  ℕcn 11637  ℤcz 11980  ℤ≥cuz 12242  ...cfz 12891  ..^cfzo 13032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-n0 11897  df-z 11981  df-uz 12243  df-fz 12892  df-fzo 13033 This theorem is referenced by:  crctcshwlkn0lem5  27591  crctcshwlkn0lem6  27592
 Copyright terms: Public domain W3C validator