MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem3 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem3 28177
Description: Lemma for crctcshwlkn0 28186. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem3
StepHypRef Expression
1 crctcshwlkn0lem.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
2 breq1 5077 . . . 4 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
3 fvoveq1 7298 . . . 4 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
4 oveq1 7282 . . . . 5 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fvoveq1d 7297 . . . 4 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
62, 3, 5ifbieq12d 4487 . . 3 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
7 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
8 0zd 12331 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ∈ ℤ)
9 elfzoel2 13386 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
10 elfzoelz 13387 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
119, 10zsubcld 12431 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
1211peano2zd 12429 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
13 elfzo1 13437 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
14 nnre 11980 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
15 nnre 11980 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
16 posdif 11468 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
17 0red 10978 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
18 resubcl 11285 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
1918ancoms 459 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
20 ltle 11063 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2117, 19, 20syl2anc 584 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2219lep1d 11906 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
23 1red 10976 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℝ)
2419, 23readdcld 11004 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
25 letr 11069 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2617, 19, 24, 25syl3anc 1370 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2722, 26mpan2d 691 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2821, 27syld 47 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2916, 28sylbid 239 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
3014, 15, 29syl2an 596 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
31303impia 1116 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ ((𝑁𝑆) + 1))
3213, 31sylbi 216 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ≤ ((𝑁𝑆) + 1))
33 eluz2 12588 . . . . . . 7 (((𝑁𝑆) + 1) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ ((𝑁𝑆) + 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝑆) + 1)))
348, 12, 32, 33syl3anbrc 1342 . . . . . 6 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
357, 34syl 17 . . . . 5 (𝜑 → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
36 fzss1 13295 . . . . 5 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3735, 36syl 17 . . . 4 (𝜑 → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3837sselda 3921 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝐽 ∈ (0...𝑁))
39 fvex 6787 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
40 fvex 6787 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
4139, 40ifex 4509 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
4241a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
431, 6, 38, 42fvmptd3 6898 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
44 elfz2 13246 . . . . . 6 (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) ↔ ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)))
45 zre 12323 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℤ → 𝑆 ∈ ℝ)
46 zre 12323 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
47 zre 12323 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4846, 47anim12i 613 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ))
49 simprr 770 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑁 ∈ ℝ)
50 simpl 483 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑆 ∈ ℝ)
5149, 50resubcld 11403 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) ∈ ℝ)
5251ltp1d 11905 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) < ((𝑁𝑆) + 1))
53 1red 10976 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 1 ∈ ℝ)
5451, 53readdcld 11004 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) + 1) ∈ ℝ)
55 simprl 768 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
56 ltletr 11067 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5751, 54, 55, 56syl3anc 1370 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5852, 57mpand 692 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → (𝑁𝑆) < 𝐽))
5951, 55ltnled 11122 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) < 𝐽 ↔ ¬ 𝐽 ≤ (𝑁𝑆)))
6058, 59sylibd 238 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6145, 48, 60syl2an 596 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6261expcom 414 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6362ancoms 459 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
64633adant1 1129 . . . . . . . . . . 11 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6510, 64syl5com 31 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6665com13 88 . . . . . . . . 9 (((𝑁𝑆) + 1) ≤ 𝐽 → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6766adantr 481 . . . . . . . 8 ((((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6867impcom 408 . . . . . . 7 (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
6968com12 32 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆)))
7044, 69syl5bi 241 . . . . 5 (𝑆 ∈ (1..^𝑁) → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
717, 70syl 17 . . . 4 (𝜑 → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7271imp 407 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆))
7372iffalsed 4470 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
7443, 73eqtrd 2778 1 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  cz 12319  cuz 12582  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  crctcshwlkn0lem5  28179  crctcshwlkn0lem6  28180
  Copyright terms: Public domain W3C validator