MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcshwlkn0lem3 Structured version   Visualization version   GIF version

Theorem crctcshwlkn0lem3 29749
Description: Lemma for crctcshwlkn0 29758. (Contributed by AV, 12-Mar-2021.)
Hypotheses
Ref Expression
crctcshwlkn0lem.s (𝜑𝑆 ∈ (1..^𝑁))
crctcshwlkn0lem.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcshwlkn0lem3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Distinct variable groups:   𝑥,𝐽   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥
Allowed substitution hint:   𝑄(𝑥)

Proof of Theorem crctcshwlkn0lem3
StepHypRef Expression
1 crctcshwlkn0lem.q . . 3 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
2 breq1 5113 . . . 4 (𝑥 = 𝐽 → (𝑥 ≤ (𝑁𝑆) ↔ 𝐽 ≤ (𝑁𝑆)))
3 fvoveq1 7413 . . . 4 (𝑥 = 𝐽 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(𝐽 + 𝑆)))
4 oveq1 7397 . . . . 5 (𝑥 = 𝐽 → (𝑥 + 𝑆) = (𝐽 + 𝑆))
54fvoveq1d 7412 . . . 4 (𝑥 = 𝐽 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
62, 3, 5ifbieq12d 4520 . . 3 (𝑥 = 𝐽 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
7 crctcshwlkn0lem.s . . . . . 6 (𝜑𝑆 ∈ (1..^𝑁))
8 0zd 12548 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ∈ ℤ)
9 elfzoel2 13626 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑁 ∈ ℤ)
10 elfzoelz 13627 . . . . . . . . 9 (𝑆 ∈ (1..^𝑁) → 𝑆 ∈ ℤ)
119, 10zsubcld 12650 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) → (𝑁𝑆) ∈ ℤ)
1211peano2zd 12648 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ ℤ)
13 elfzo1 13680 . . . . . . . 8 (𝑆 ∈ (1..^𝑁) ↔ (𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁))
14 nnre 12200 . . . . . . . . . 10 (𝑆 ∈ ℕ → 𝑆 ∈ ℝ)
15 nnre 12200 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
16 posdif 11678 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 ↔ 0 < (𝑁𝑆)))
17 0red 11184 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 0 ∈ ℝ)
18 resubcl 11493 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℝ ∧ 𝑆 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
1918ancoms 458 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ∈ ℝ)
20 ltle 11269 . . . . . . . . . . . . 13 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2117, 19, 20syl2anc 584 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ (𝑁𝑆)))
2219lep1d 12121 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑁𝑆) ≤ ((𝑁𝑆) + 1))
23 1red 11182 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 1 ∈ ℝ)
2419, 23readdcld 11210 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) + 1) ∈ ℝ)
25 letr 11275 . . . . . . . . . . . . . 14 ((0 ∈ ℝ ∧ (𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2617, 19, 24, 25syl3anc 1373 . . . . . . . . . . . . 13 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((0 ≤ (𝑁𝑆) ∧ (𝑁𝑆) ≤ ((𝑁𝑆) + 1)) → 0 ≤ ((𝑁𝑆) + 1)))
2722, 26mpan2d 694 . . . . . . . . . . . 12 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 ≤ (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2821, 27syld 47 . . . . . . . . . . 11 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < (𝑁𝑆) → 0 ≤ ((𝑁𝑆) + 1)))
2916, 28sylbid 240 . . . . . . . . . 10 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
3014, 15, 29syl2an 596 . . . . . . . . 9 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑆 < 𝑁 → 0 ≤ ((𝑁𝑆) + 1)))
31303impia 1117 . . . . . . . 8 ((𝑆 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑆 < 𝑁) → 0 ≤ ((𝑁𝑆) + 1))
3213, 31sylbi 217 . . . . . . 7 (𝑆 ∈ (1..^𝑁) → 0 ≤ ((𝑁𝑆) + 1))
33 eluz2 12806 . . . . . . 7 (((𝑁𝑆) + 1) ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ ((𝑁𝑆) + 1) ∈ ℤ ∧ 0 ≤ ((𝑁𝑆) + 1)))
348, 12, 32, 33syl3anbrc 1344 . . . . . 6 (𝑆 ∈ (1..^𝑁) → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
357, 34syl 17 . . . . 5 (𝜑 → ((𝑁𝑆) + 1) ∈ (ℤ‘0))
36 fzss1 13531 . . . . 5 (((𝑁𝑆) + 1) ∈ (ℤ‘0) → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3735, 36syl 17 . . . 4 (𝜑 → (((𝑁𝑆) + 1)...𝑁) ⊆ (0...𝑁))
3837sselda 3949 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → 𝐽 ∈ (0...𝑁))
39 fvex 6874 . . . . 5 (𝑃‘(𝐽 + 𝑆)) ∈ V
40 fvex 6874 . . . . 5 (𝑃‘((𝐽 + 𝑆) − 𝑁)) ∈ V
4139, 40ifex 4542 . . . 4 if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V
4241a1i 11 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) ∈ V)
431, 6, 38, 42fvmptd3 6994 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))))
44 elfz2 13482 . . . . . 6 (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) ↔ ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)))
45 zre 12540 . . . . . . . . . . . . . . 15 (𝑆 ∈ ℤ → 𝑆 ∈ ℝ)
46 zre 12540 . . . . . . . . . . . . . . . 16 (𝐽 ∈ ℤ → 𝐽 ∈ ℝ)
47 zre 12540 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
4846, 47anim12i 613 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ))
49 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑁 ∈ ℝ)
50 simpl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝑆 ∈ ℝ)
5149, 50resubcld 11613 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) ∈ ℝ)
5251ltp1d 12120 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (𝑁𝑆) < ((𝑁𝑆) + 1))
53 1red 11182 . . . . . . . . . . . . . . . . . . 19 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 1 ∈ ℝ)
5451, 53readdcld 11210 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) + 1) ∈ ℝ)
55 simprl 770 . . . . . . . . . . . . . . . . . 18 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → 𝐽 ∈ ℝ)
56 ltletr 11273 . . . . . . . . . . . . . . . . . 18 (((𝑁𝑆) ∈ ℝ ∧ ((𝑁𝑆) + 1) ∈ ℝ ∧ 𝐽 ∈ ℝ) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5751, 54, 55, 56syl3anc 1373 . . . . . . . . . . . . . . . . 17 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) < ((𝑁𝑆) + 1) ∧ ((𝑁𝑆) + 1) ≤ 𝐽) → (𝑁𝑆) < 𝐽))
5852, 57mpand 695 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → (𝑁𝑆) < 𝐽))
5951, 55ltnled 11328 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → ((𝑁𝑆) < 𝐽 ↔ ¬ 𝐽 ≤ (𝑁𝑆)))
6058, 59sylibd 239 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ (𝐽 ∈ ℝ ∧ 𝑁 ∈ ℝ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6145, 48, 60syl2an 596 . . . . . . . . . . . . . 14 ((𝑆 ∈ ℤ ∧ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆)))
6261expcom 413 . . . . . . . . . . . . 13 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6362ancoms 458 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
64633adant1 1130 . . . . . . . . . . 11 ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ ℤ → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6510, 64syl5com 31 . . . . . . . . . 10 (𝑆 ∈ (1..^𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (((𝑁𝑆) + 1) ≤ 𝐽 → ¬ 𝐽 ≤ (𝑁𝑆))))
6665com13 88 . . . . . . . . 9 (((𝑁𝑆) + 1) ≤ 𝐽 → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6766adantr 480 . . . . . . . 8 ((((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁) → ((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆))))
6867impcom 407 . . . . . . 7 (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → (𝑆 ∈ (1..^𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
6968com12 32 . . . . . 6 (𝑆 ∈ (1..^𝑁) → (((((𝑁𝑆) + 1) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (((𝑁𝑆) + 1) ≤ 𝐽𝐽𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆)))
7044, 69biimtrid 242 . . . . 5 (𝑆 ∈ (1..^𝑁) → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
717, 70syl 17 . . . 4 (𝜑 → (𝐽 ∈ (((𝑁𝑆) + 1)...𝑁) → ¬ 𝐽 ≤ (𝑁𝑆)))
7271imp 406 . . 3 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → ¬ 𝐽 ≤ (𝑁𝑆))
7372iffalsed 4502 . 2 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → if(𝐽 ≤ (𝑁𝑆), (𝑃‘(𝐽 + 𝑆)), (𝑃‘((𝐽 + 𝑆) − 𝑁))) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
7443, 73eqtrd 2765 1 ((𝜑𝐽 ∈ (((𝑁𝑆) + 1)...𝑁)) → (𝑄𝐽) = (𝑃‘((𝐽 + 𝑆) − 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917  ifcif 4491   class class class wbr 5110  cmpt 5191  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   < clt 11215  cle 11216  cmin 11412  cn 12193  cz 12536  cuz 12800  ...cfz 13475  ..^cfzo 13622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623
This theorem is referenced by:  crctcshwlkn0lem5  29751  crctcshwlkn0lem6  29752
  Copyright terms: Public domain W3C validator