![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dchrabs2 | Structured version Visualization version GIF version |
Description: A Dirichlet character takes values inside the unit circle. (Contributed by Mario Carneiro, 3-May-2016.) |
Ref | Expression |
---|---|
dchrabs2.g | ⊢ 𝐺 = (DChr‘𝑁) |
dchrabs2.d | ⊢ 𝐷 = (Base‘𝐺) |
dchrabs2.z | ⊢ 𝑍 = (ℤ/nℤ‘𝑁) |
dchrabs2.b | ⊢ 𝐵 = (Base‘𝑍) |
dchrabs2.x | ⊢ (𝜑 → 𝑋 ∈ 𝐷) |
dchrabs2.a | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
Ref | Expression |
---|---|
dchrabs2 | ⊢ (𝜑 → (abs‘(𝑋‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 478 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘𝐴) = 0) → (𝑋‘𝐴) = 0) | |
2 | 1 | abs00bd 14372 | . . 3 ⊢ ((𝜑 ∧ (𝑋‘𝐴) = 0) → (abs‘(𝑋‘𝐴)) = 0) |
3 | 0le1 10843 | . . 3 ⊢ 0 ≤ 1 | |
4 | 2, 3 | syl6eqbr 4882 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) = 0) → (abs‘(𝑋‘𝐴)) ≤ 1) |
5 | dchrabs2.g | . . . 4 ⊢ 𝐺 = (DChr‘𝑁) | |
6 | dchrabs2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐺) | |
7 | dchrabs2.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐷) | |
8 | 7 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝑋 ∈ 𝐷) |
9 | dchrabs2.z | . . . 4 ⊢ 𝑍 = (ℤ/nℤ‘𝑁) | |
10 | eqid 2799 | . . . 4 ⊢ (Unit‘𝑍) = (Unit‘𝑍) | |
11 | dchrabs2.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑍) | |
12 | dchrabs2.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
13 | 5, 9, 6, 11, 10, 7, 12 | dchrn0 25327 | . . . . 5 ⊢ (𝜑 → ((𝑋‘𝐴) ≠ 0 ↔ 𝐴 ∈ (Unit‘𝑍))) |
14 | 13 | biimpa 469 | . . . 4 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → 𝐴 ∈ (Unit‘𝑍)) |
15 | 5, 6, 8, 9, 10, 14 | dchrabs 25337 | . . 3 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → (abs‘(𝑋‘𝐴)) = 1) |
16 | 1le1 10947 | . . 3 ⊢ 1 ≤ 1 | |
17 | 15, 16 | syl6eqbr 4882 | . 2 ⊢ ((𝜑 ∧ (𝑋‘𝐴) ≠ 0) → (abs‘(𝑋‘𝐴)) ≤ 1) |
18 | 4, 17 | pm2.61dane 3058 | 1 ⊢ (𝜑 → (abs‘(𝑋‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 class class class wbr 4843 ‘cfv 6101 0cc0 10224 1c1 10225 ≤ cle 10364 abscabs 14315 Basecbs 16184 Unitcui 18955 ℤ/nℤczn 20173 DChrcdchr 25309 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-iin 4713 df-disj 4812 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-se 5272 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-isom 6110 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-of 7131 df-om 7300 df-1st 7401 df-2nd 7402 df-supp 7533 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-omul 7804 df-er 7982 df-ec 7984 df-qs 7988 df-map 8097 df-pm 8098 df-ixp 8149 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-fsupp 8518 df-fi 8559 df-sup 8590 df-inf 8591 df-oi 8657 df-card 9051 df-acn 9054 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-q 12034 df-rp 12075 df-xneg 12193 df-xadd 12194 df-xmul 12195 df-ioo 12428 df-ioc 12429 df-ico 12430 df-icc 12431 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-exp 13115 df-fac 13314 df-bc 13343 df-hash 13371 df-shft 14148 df-cj 14180 df-re 14181 df-im 14182 df-sqrt 14316 df-abs 14317 df-limsup 14543 df-clim 14560 df-rlim 14561 df-sum 14758 df-ef 15134 df-sin 15136 df-cos 15137 df-pi 15139 df-dvds 15320 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-hom 16291 df-cco 16292 df-rest 16398 df-topn 16399 df-0g 16417 df-gsum 16418 df-topgen 16419 df-pt 16420 df-prds 16423 df-xrs 16477 df-qtop 16482 df-imas 16483 df-qus 16484 df-xps 16485 df-mre 16561 df-mrc 16562 df-acs 16564 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-submnd 17651 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-nsg 17905 df-eqg 17906 df-ghm 17971 df-cntz 18062 df-od 18261 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-oppr 18939 df-dvdsr 18957 df-unit 18958 df-invr 18988 df-dvr 18999 df-rnghom 19033 df-drng 19067 df-subrg 19096 df-lmod 19183 df-lss 19251 df-lsp 19293 df-sra 19495 df-rgmod 19496 df-lidl 19497 df-rsp 19498 df-2idl 19555 df-psmet 20060 df-xmet 20061 df-met 20062 df-bl 20063 df-mopn 20064 df-fbas 20065 df-fg 20066 df-cnfld 20069 df-zring 20141 df-zrh 20174 df-zn 20177 df-top 21027 df-topon 21044 df-topsp 21066 df-bases 21079 df-cld 21152 df-ntr 21153 df-cls 21154 df-nei 21231 df-lp 21269 df-perf 21270 df-cn 21360 df-cnp 21361 df-haus 21448 df-tx 21694 df-hmeo 21887 df-fil 21978 df-fm 22070 df-flim 22071 df-flf 22072 df-xms 22453 df-ms 22454 df-tms 22455 df-cncf 23009 df-limc 23971 df-dv 23972 df-log 24644 df-cxp 24645 df-dchr 25310 |
This theorem is referenced by: dchrmusum2 25535 dchrvmasumlem3 25540 dchrisum0flblem1 25549 dchrisum0lem2a 25558 |
Copyright terms: Public domain | W3C validator |