MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrabs2 Structured version   Visualization version   GIF version

Theorem dchrabs2 27193
Description: A Dirichlet character takes values inside the unit circle. (Contributed by Mario Carneiro, 3-May-2016.)
Hypotheses
Ref Expression
dchrabs2.g 𝐺 = (DChr‘𝑁)
dchrabs2.d 𝐷 = (Base‘𝐺)
dchrabs2.z 𝑍 = (ℤ/nℤ‘𝑁)
dchrabs2.b 𝐵 = (Base‘𝑍)
dchrabs2.x (𝜑𝑋𝐷)
dchrabs2.a (𝜑𝐴𝐵)
Assertion
Ref Expression
dchrabs2 (𝜑 → (abs‘(𝑋𝐴)) ≤ 1)

Proof of Theorem dchrabs2
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑 ∧ (𝑋𝐴) = 0) → (𝑋𝐴) = 0)
21abs00bd 15190 . . 3 ((𝜑 ∧ (𝑋𝐴) = 0) → (abs‘(𝑋𝐴)) = 0)
3 0le1 11632 . . 3 0 ≤ 1
42, 3eqbrtrdi 5128 . 2 ((𝜑 ∧ (𝑋𝐴) = 0) → (abs‘(𝑋𝐴)) ≤ 1)
5 dchrabs2.g . . . 4 𝐺 = (DChr‘𝑁)
6 dchrabs2.d . . . 4 𝐷 = (Base‘𝐺)
7 dchrabs2.x . . . . 5 (𝜑𝑋𝐷)
87adantr 480 . . . 4 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝑋𝐷)
9 dchrabs2.z . . . 4 𝑍 = (ℤ/nℤ‘𝑁)
10 eqid 2730 . . . 4 (Unit‘𝑍) = (Unit‘𝑍)
11 dchrabs2.b . . . . . 6 𝐵 = (Base‘𝑍)
12 dchrabs2.a . . . . . 6 (𝜑𝐴𝐵)
135, 9, 6, 11, 10, 7, 12dchrn0 27181 . . . . 5 (𝜑 → ((𝑋𝐴) ≠ 0 ↔ 𝐴 ∈ (Unit‘𝑍)))
1413biimpa 476 . . . 4 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → 𝐴 ∈ (Unit‘𝑍))
155, 6, 8, 9, 10, 14dchrabs 27191 . . 3 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → (abs‘(𝑋𝐴)) = 1)
16 1le1 11737 . . 3 1 ≤ 1
1715, 16eqbrtrdi 5128 . 2 ((𝜑 ∧ (𝑋𝐴) ≠ 0) → (abs‘(𝑋𝐴)) ≤ 1)
184, 17pm2.61dane 3013 1 (𝜑 → (abs‘(𝑋𝐴)) ≤ 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926   class class class wbr 5089  cfv 6477  0cc0 10998  1c1 10999  cle 11139  abscabs 15133  Basecbs 17112  Unitcui 20266  ℤ/nczn 21432  DChrcdchr 27163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076  ax-addf 11077  ax-mulf 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-tp 4579  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-of 7605  df-om 7792  df-1st 7916  df-2nd 7917  df-supp 8086  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-ec 8619  df-qs 8623  df-map 8747  df-pm 8748  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-fsupp 9241  df-fi 9290  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-4 12182  df-5 12183  df-6 12184  df-7 12185  df-8 12186  df-9 12187  df-n0 12374  df-z 12461  df-dec 12581  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-ioo 13241  df-ioc 13242  df-ico 13243  df-icc 13244  df-fz 13400  df-fzo 13547  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-fac 14173  df-bc 14202  df-hash 14230  df-shft 14966  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-limsup 15370  df-clim 15387  df-rlim 15388  df-sum 15586  df-ef 15966  df-sin 15968  df-cos 15969  df-pi 15971  df-dvds 16156  df-struct 17050  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-starv 17168  df-sca 17169  df-vsca 17170  df-ip 17171  df-tset 17172  df-ple 17173  df-ds 17175  df-unif 17176  df-hom 17177  df-cco 17178  df-rest 17318  df-topn 17319  df-0g 17337  df-gsum 17338  df-topgen 17339  df-pt 17340  df-prds 17343  df-xrs 17398  df-qtop 17403  df-imas 17404  df-qus 17405  df-xps 17406  df-mre 17480  df-mrc 17481  df-acs 17483  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-mulg 18973  df-subg 19028  df-nsg 19029  df-eqg 19030  df-ghm 19118  df-cntz 19222  df-od 19433  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-cring 20147  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-dvr 20312  df-rhm 20383  df-subrng 20454  df-subrg 20478  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-sra 21100  df-rgmod 21101  df-lidl 21138  df-rsp 21139  df-2idl 21180  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-fbas 21281  df-fg 21282  df-cnfld 21285  df-zring 21377  df-zrh 21433  df-zn 21436  df-top 22802  df-topon 22819  df-topsp 22841  df-bases 22854  df-cld 22927  df-ntr 22928  df-cls 22929  df-nei 23006  df-lp 23044  df-perf 23045  df-cn 23135  df-cnp 23136  df-haus 23223  df-tx 23470  df-hmeo 23663  df-fil 23754  df-fm 23846  df-flim 23847  df-flf 23848  df-xms 24228  df-ms 24229  df-tms 24230  df-cncf 24791  df-limc 25787  df-dv 25788  df-log 26485  df-cxp 26486  df-dchr 27164
This theorem is referenced by:  dchrmusum2  27425  dchrvmasumlem3  27430  dchrisum0flblem1  27439  dchrisum0lem2a  27448
  Copyright terms: Public domain W3C validator