| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemrc | Structured version Visualization version GIF version | ||
| Description: Range of 𝑅. (Contributed by Thierry Arnoux, 19-Apr-2017.) |
| Ref | Expression |
|---|---|
| ballotth.m | ⊢ 𝑀 ∈ ℕ |
| ballotth.n | ⊢ 𝑁 ∈ ℕ |
| ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
| ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
| ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| ballotth.r | ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) |
| Ref | Expression |
|---|---|
| ballotlemrc | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ballotth.m | . . 3 ⊢ 𝑀 ∈ ℕ | |
| 2 | ballotth.n | . . 3 ⊢ 𝑁 ∈ ℕ | |
| 3 | ballotth.o | . . 3 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
| 4 | ballotth.p | . . 3 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
| 5 | ballotth.f | . . 3 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
| 6 | ballotth.e | . . 3 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
| 7 | ballotth.mgtn | . . 3 ⊢ 𝑁 < 𝑀 | |
| 8 | ballotth.i | . . 3 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
| 9 | ballotth.s | . . 3 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
| 10 | ballotth.r | . . 3 ⊢ 𝑅 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ ((𝑆‘𝑐) “ 𝑐)) | |
| 11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | ballotlemro 34501 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ 𝑂) |
| 12 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 34480 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 13 | 12 | simpld 494 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 14 | eqid 2735 | . . . . 5 ⊢ (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) = (𝑢 ∈ Fin, 𝑣 ∈ Fin ↦ ((♯‘(𝑣 ∩ 𝑢)) − (♯‘(𝑣 ∖ 𝑢)))) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 14 | ballotlemfrci 34506 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) = 0) |
| 16 | 0le0 12339 | . . . 4 ⊢ 0 ≤ 0 | |
| 17 | 15, 16 | eqbrtrdi 5158 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) ≤ 0) |
| 18 | fveq2 6875 | . . . . 5 ⊢ (𝑖 = (𝐼‘𝐶) → ((𝐹‘(𝑅‘𝐶))‘𝑖) = ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶))) | |
| 19 | 18 | breq1d 5129 | . . . 4 ⊢ (𝑖 = (𝐼‘𝐶) → (((𝐹‘(𝑅‘𝐶))‘𝑖) ≤ 0 ↔ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) ≤ 0)) |
| 20 | 19 | rspcev 3601 | . . 3 ⊢ (((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘(𝑅‘𝐶))‘(𝐼‘𝐶)) ≤ 0) → ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘(𝑅‘𝐶))‘𝑖) ≤ 0) |
| 21 | 13, 17, 20 | syl2anc 584 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘(𝑅‘𝐶))‘𝑖) ≤ 0) |
| 22 | 1, 2, 3, 4, 5, 6 | ballotlemodife 34476 | . 2 ⊢ ((𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸) ↔ ((𝑅‘𝐶) ∈ 𝑂 ∧ ∃𝑖 ∈ (1...(𝑀 + 𝑁))((𝐹‘(𝑅‘𝐶))‘𝑖) ≤ 0)) |
| 23 | 11, 21, 22 | sylanbrc 583 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑅‘𝐶) ∈ (𝑂 ∖ 𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 ∖ cdif 3923 ∩ cin 3925 ifcif 4500 𝒫 cpw 4575 class class class wbr 5119 ↦ cmpt 5201 “ cima 5657 ‘cfv 6530 (class class class)co 7403 ∈ cmpo 7405 Fincfn 8957 infcinf 9451 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 < clt 11267 ≤ cle 11268 − cmin 11464 / cdiv 11892 ℕcn 12238 ℤcz 12586 ...cfz 13522 ♯chash 14346 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-inf 9453 df-dju 9913 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-fz 13523 df-hash 14347 |
| This theorem is referenced by: ballotlemirc 34510 ballotlemrinv0 34511 ballotlem7 34514 |
| Copyright terms: Public domain | W3C validator |