Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expnngt1b | Structured version Visualization version GIF version |
Description: An integer power with an integer base greater than 1 is greater than 1 iff the exponent is positive. (Contributed by AV, 28-Dec-2022.) |
Ref | Expression |
---|---|
expnngt1b | ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (1 < (𝐴↑𝐵) ↔ 𝐵 ∈ ℕ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2nn 12674 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
2 | 1 | adantr 482 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℕ) |
3 | 2 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 1 < (𝐴↑𝐵)) → 𝐴 ∈ ℕ) |
4 | simplr 767 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 1 < (𝐴↑𝐵)) → 𝐵 ∈ ℤ) | |
5 | simpr 486 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 1 < (𝐴↑𝐵)) → 1 < (𝐴↑𝐵)) | |
6 | expnngt1 14006 | . . 3 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℤ ∧ 1 < (𝐴↑𝐵)) → 𝐵 ∈ ℕ) | |
7 | 3, 4, 5, 6 | syl3anc 1371 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 1 < (𝐴↑𝐵)) → 𝐵 ∈ ℕ) |
8 | 2 | nnred 12038 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → 𝐴 ∈ ℝ) |
9 | 8 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ) |
10 | simpr 486 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ) | |
11 | eluz2gt1 12710 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) | |
12 | 11 | adantr 482 | . . . 4 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → 1 < 𝐴) |
13 | 12 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ) → 1 < 𝐴) |
14 | expgt1 13871 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴↑𝐵)) | |
15 | 9, 10, 13, 14 | syl3anc 1371 | . 2 ⊢ (((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) ∧ 𝐵 ∈ ℕ) → 1 < (𝐴↑𝐵)) |
16 | 7, 15 | impbida 799 | 1 ⊢ ((𝐴 ∈ (ℤ≥‘2) ∧ 𝐵 ∈ ℤ) → (1 < (𝐴↑𝐵) ↔ 𝐵 ∈ ℕ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 ℝcr 10920 1c1 10922 < clt 11059 ℕcn 12023 2c2 12078 ℤcz 12369 ℤ≥cuz 12632 ↑cexp 13832 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3331 df-reu 3332 df-rab 3333 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-div 11683 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 df-rp 12781 df-seq 13772 df-exp 13833 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |