MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgt1 Structured version   Visualization version   GIF version

Theorem expgt1 13749
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))

Proof of Theorem expgt1
StepHypRef Expression
1 1re 10906 . . 3 1 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ∈ ℝ)
3 simp1 1134 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
4 simp2 1135 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ)
54nnnn0d 12223 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
6 reexpcl 13727 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
73, 5, 6syl2anc 583 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
8 simp3 1136 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < 𝐴)
9 nnm1nn0 12204 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
104, 9syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝑁 − 1) ∈ ℕ0)
11 ltle 10994 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 → 1 ≤ 𝐴))
121, 3, 11sylancr 586 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 < 𝐴 → 1 ≤ 𝐴))
138, 12mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ 𝐴)
14 expge1 13748 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
153, 10, 13, 14syl3anc 1369 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
16 reexpcl 13727 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
173, 10, 16syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
18 0red 10909 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 ∈ ℝ)
19 0lt1 11427 . . . . . . 7 0 < 1
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 1)
2118, 2, 3, 20, 8lttrd 11066 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 𝐴)
22 lemul1 11757 . . . . 5 ((1 ∈ ℝ ∧ (𝐴↑(𝑁 − 1)) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
232, 17, 3, 21, 22syl112anc 1372 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
2415, 23mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))
25 recn 10892 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26253ad2ant1 1131 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
2726mulid2d 10924 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) = 𝐴)
2827eqcomd 2744 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 = (1 · 𝐴))
29 expm1t 13739 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3026, 4, 29syl2anc 583 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3124, 28, 303brtr4d 5102 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ≤ (𝐴𝑁))
322, 3, 7, 8, 31ltletrd 11065 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1085   = wceq 1539  wcel 2108   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  ltexp2a  13812  expnngt1b  13885  dvdsprmpweqle  16515  perfectlem1  26282  perfectlem2  26283  dchrisum0flblem2  26562  stirlinglem10  43514  fmtno4prm  44915  perfectALTVlem1  45061  perfectALTVlem2  45062  fllog2  45802  dignn0flhalflem1  45849
  Copyright terms: Public domain W3C validator