MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expgt1 Structured version   Visualization version   GIF version

Theorem expgt1 14101
Description: A real greater than 1 raised to a positive integer is greater than 1. (Contributed by NM, 13-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expgt1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))

Proof of Theorem expgt1
StepHypRef Expression
1 1re 11246 . . 3 1 ∈ ℝ
21a1i 11 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ∈ ℝ)
3 simp1 1133 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℝ)
4 simp2 1134 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ)
54nnnn0d 12565 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝑁 ∈ ℕ0)
6 reexpcl 14079 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℝ)
73, 5, 6syl2anc 582 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) ∈ ℝ)
8 simp3 1135 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < 𝐴)
9 nnm1nn0 12546 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
104, 9syl 17 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝑁 − 1) ∈ ℕ0)
11 ltle 11334 . . . . . . 7 ((1 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (1 < 𝐴 → 1 ≤ 𝐴))
121, 3, 11sylancr 585 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 < 𝐴 → 1 ≤ 𝐴))
138, 12mpd 15 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ 𝐴)
14 expge1 14100 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0 ∧ 1 ≤ 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
153, 10, 13, 14syl3anc 1368 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 ≤ (𝐴↑(𝑁 − 1)))
16 reexpcl 14079 . . . . . 6 ((𝐴 ∈ ℝ ∧ (𝑁 − 1) ∈ ℕ0) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
173, 10, 16syl2anc 582 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴↑(𝑁 − 1)) ∈ ℝ)
18 0red 11249 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 ∈ ℝ)
19 0lt1 11768 . . . . . . 7 0 < 1
2019a1i 11 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 1)
2118, 2, 3, 20, 8lttrd 11407 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 0 < 𝐴)
22 lemul1 12099 . . . . 5 ((1 ∈ ℝ ∧ (𝐴↑(𝑁 − 1)) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
232, 17, 3, 21, 22syl112anc 1371 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 ≤ (𝐴↑(𝑁 − 1)) ↔ (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴)))
2415, 23mpbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) ≤ ((𝐴↑(𝑁 − 1)) · 𝐴))
25 recn 11230 . . . . . 6 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
26253ad2ant1 1130 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ∈ ℂ)
2726mullidd 11264 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (1 · 𝐴) = 𝐴)
2827eqcomd 2731 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 = (1 · 𝐴))
29 expm1t 14091 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3026, 4, 29syl2anc 582 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → (𝐴𝑁) = ((𝐴↑(𝑁 − 1)) · 𝐴))
3124, 28, 303brtr4d 5181 . 2 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 𝐴 ≤ (𝐴𝑁))
322, 3, 7, 8, 31ltletrd 11406 1 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℕ ∧ 1 < 𝐴) → 1 < (𝐴𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1084   = wceq 1533  wcel 2098   class class class wbr 5149  (class class class)co 7419  cc 11138  cr 11139  0cc0 11140  1c1 11141   · cmul 11145   < clt 11280  cle 11281  cmin 11476  cn 12245  0cn0 12505  cexp 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-seq 14003  df-exp 14063
This theorem is referenced by:  ltexp2a  14166  expnngt1b  14240  dvdsprmpweqle  16858  perfectlem1  27207  perfectlem2  27208  dchrisum0flblem2  27487  stirlinglem10  45606  fmtno4prm  47049  perfectALTVlem1  47195  perfectALTVlem2  47196  fllog2  47824  dignn0flhalflem1  47871
  Copyright terms: Public domain W3C validator