MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2gt1 Structured version   Visualization version   GIF version

Theorem eluz2gt1 12906
Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
eluz2gt1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)

Proof of Theorem eluz2gt1
StepHypRef Expression
1 eluz2b1 12905 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
21simprbi 497 1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106   class class class wbr 5148  cfv 6543  1c1 11113   < clt 11250  2c2 12269  cz 12560  cuz 12824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11252  df-mnf 11253  df-xr 11254  df-ltxr 11255  df-le 11256  df-sub 11448  df-neg 11449  df-nn 12215  df-2 12277  df-n0 12475  df-z 12561  df-uz 12825
This theorem is referenced by:  mulp1mod1  13879  expnngt1b  14207  modm1div  16211  prmind2  16624  nprm  16627  prmgt1  16636  sqnprm  16641  isprm5  16646  phibndlem  16705  pclem  16773  pcpre1  16777  pcidlem  16807  prmreclem1  16851  odcau  19474  gexexlem  19722  logbgcd1irr  26306  wilthlem1  26579  wilth  26582  isppw  26625  fsumvma2  26724  chpval2  26728  chpchtsum  26729  chpub  26730  mersenne  26737  perfect1  26738  bposlem1  26794  bposlem5  26798  2sqblem  26941  rplogsumlem2  26995  rpvmasumlem  26997  dchrisum0flblem2  27019  frgrregord013  29686  rtprmirr  41319  rmspecsqrtnq  41726  fmtnoprmfac2lem1  46313  lighneallem2  46353  lighneallem4a  46355  expnegico01  47277  logbge0b  47327  logblt1b  47328  dignn0ldlem  47366  digexp  47371
  Copyright terms: Public domain W3C validator