MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2gt1 Structured version   Visualization version   GIF version

Theorem eluz2gt1 12818
Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
eluz2gt1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)

Proof of Theorem eluz2gt1
StepHypRef Expression
1 eluz2b1 12817 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
21simprbi 496 1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111   class class class wbr 5089  cfv 6481  1c1 11007   < clt 11146  2c2 12180  cz 12468  cuz 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733
This theorem is referenced by:  mulp1mod1  13818  expnngt1b  14149  modm1div  16175  prmind2  16596  nprm  16599  prmgt1  16608  sqnprm  16613  isprm5  16618  phibndlem  16681  pclem  16750  pcpre1  16754  pcidlem  16784  prmreclem1  16828  odcau  19516  gexexlem  19764  rtprmirr  26697  logbgcd1irr  26731  wilthlem1  27005  wilth  27008  isppw  27051  fsumvma2  27152  chpval2  27156  chpchtsum  27157  chpub  27158  mersenne  27165  perfect1  27166  bposlem1  27222  bposlem5  27226  2sqblem  27369  rplogsumlem2  27423  rpvmasumlem  27425  dchrisum0flblem2  27447  frgrregord013  30375  evl1deg1  33539  rmspecsqrtnq  42998  m1modne  47447  fmtnoprmfac2lem1  47665  lighneallem2  47705  lighneallem4a  47707  gpgprismgriedgdmss  48151  gpgprismgr4cycllem3  48196  gpgprismgr4cycllem9  48202  expnegico01  48618  logbge0b  48663  logblt1b  48664  dignn0ldlem  48702  digexp  48707
  Copyright terms: Public domain W3C validator