| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluz2gt1 | Structured version Visualization version GIF version | ||
| Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
| Ref | Expression |
|---|---|
| eluz2gt1 | ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2b1 12854 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 class class class wbr 5102 ‘cfv 6499 1c1 11045 < clt 11184 2c2 12217 ℤcz 12505 ℤ≥cuz 12769 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 |
| This theorem is referenced by: mulp1mod1 13852 expnngt1b 14183 modm1div 16210 prmind2 16631 nprm 16634 prmgt1 16643 sqnprm 16648 isprm5 16653 phibndlem 16716 pclem 16785 pcpre1 16789 pcidlem 16819 prmreclem1 16863 odcau 19518 gexexlem 19766 rtprmirr 26703 logbgcd1irr 26737 wilthlem1 27011 wilth 27014 isppw 27057 fsumvma2 27158 chpval2 27162 chpchtsum 27163 chpub 27164 mersenne 27171 perfect1 27172 bposlem1 27228 bposlem5 27232 2sqblem 27375 rplogsumlem2 27429 rpvmasumlem 27431 dchrisum0flblem2 27453 frgrregord013 30374 evl1deg1 33538 rmspecsqrtnq 42887 m1modne 47342 fmtnoprmfac2lem1 47560 lighneallem2 47600 lighneallem4a 47602 gpgprismgriedgdmss 48036 gpgprismgr4cycllem3 48080 gpgprismgr4cycllem9 48086 expnegico01 48500 logbge0b 48545 logblt1b 48546 dignn0ldlem 48584 digexp 48589 |
| Copyright terms: Public domain | W3C validator |