Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eluz2gt1 | Structured version Visualization version GIF version |
Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.) |
Ref | Expression |
---|---|
eluz2gt1 | ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2b1 12709 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁)) | |
2 | 1 | simprbi 498 | 1 ⊢ (𝑁 ∈ (ℤ≥‘2) → 1 < 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 1c1 10922 < clt 11059 2c2 12078 ℤcz 12369 ℤ≥cuz 12632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10977 ax-resscn 10978 ax-1cn 10979 ax-icn 10980 ax-addcl 10981 ax-addrcl 10982 ax-mulcl 10983 ax-mulrcl 10984 ax-mulcom 10985 ax-addass 10986 ax-mulass 10987 ax-distr 10988 ax-i2m1 10989 ax-1ne0 10990 ax-1rid 10991 ax-rnegex 10992 ax-rrecex 10993 ax-cnre 10994 ax-pre-lttri 10995 ax-pre-lttrn 10996 ax-pre-ltadd 10997 ax-pre-mulgt0 10998 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3305 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-2nd 7864 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 df-sub 11257 df-neg 11258 df-nn 12024 df-2 12086 df-n0 12284 df-z 12370 df-uz 12633 |
This theorem is referenced by: mulp1mod1 13682 expnngt1b 14007 modm1div 16024 prmind2 16439 nprm 16442 prmgt1 16451 sqnprm 16456 isprm5 16461 phibndlem 16520 pclem 16588 pcpre1 16592 pcidlem 16622 prmreclem1 16666 odcau 19258 gexexlem 19502 logbgcd1irr 25993 wilthlem1 26266 wilth 26269 isppw 26312 fsumvma2 26411 chpval2 26415 chpchtsum 26416 chpub 26417 mersenne 26424 perfect1 26425 bposlem1 26481 bposlem5 26485 2sqblem 26628 rplogsumlem2 26682 rpvmasumlem 26684 dchrisum0flblem2 26706 frgrregord013 28808 rtprmirr 40542 rmspecsqrtnq 40923 fmtnoprmfac2lem1 45262 lighneallem2 45302 lighneallem4a 45304 expnegico01 46103 logbge0b 46153 logblt1b 46154 dignn0ldlem 46192 digexp 46197 |
Copyright terms: Public domain | W3C validator |