MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluz2gt1 Structured version   Visualization version   GIF version

Theorem eluz2gt1 12948
Description: An integer greater than or equal to 2 is greater than 1. (Contributed by AV, 24-May-2020.)
Assertion
Ref Expression
eluz2gt1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)

Proof of Theorem eluz2gt1
StepHypRef Expression
1 eluz2b1 12947 . 2 (𝑁 ∈ (ℤ‘2) ↔ (𝑁 ∈ ℤ ∧ 1 < 𝑁))
21simprbi 495 1 (𝑁 ∈ (ℤ‘2) → 1 < 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099   class class class wbr 5144  cfv 6544  1c1 11148   < clt 11287  2c2 12311  cz 12602  cuz 12866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-2 12319  df-n0 12517  df-z 12603  df-uz 12867
This theorem is referenced by:  mulp1mod1  13924  expnngt1b  14252  modm1div  16261  prmind2  16679  nprm  16682  prmgt1  16691  sqnprm  16696  isprm5  16701  phibndlem  16765  pclem  16833  pcpre1  16837  pcidlem  16867  prmreclem1  16911  odcau  19596  gexexlem  19844  rtprmirr  26783  logbgcd1irr  26817  wilthlem1  27091  wilth  27094  isppw  27137  fsumvma2  27238  chpval2  27242  chpchtsum  27243  chpub  27244  mersenne  27251  perfect1  27252  bposlem1  27308  bposlem5  27312  2sqblem  27455  rplogsumlem2  27509  rpvmasumlem  27511  dchrisum0flblem2  27533  frgrregord013  30323  evl1deg1  33452  rmspecsqrtnq  42598  fmtnoprmfac2lem1  47172  lighneallem2  47212  lighneallem4a  47214  expnegico01  47935  logbge0b  47985  logblt1b  47986  dignn0ldlem  48024  digexp  48029
  Copyright terms: Public domain W3C validator