Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege129 Structured version   Visualization version   GIF version

Theorem frege129 42338
Description: If the procedure 𝑅 is single-valued and 𝑌 belongs to the 𝑅 -sequence begining with 𝑀 or precedes 𝑀 in the 𝑅-sequence, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence begining with 𝑀 or precedes 𝑀 in the 𝑅-sequence. Proposition 129 of [Frege1879] p. 83. (Contributed by RP, 9-Jul-2020.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
frege123.x 𝑋𝑈
frege123.y 𝑌𝑉
frege124.m 𝑀𝑊
frege124.r 𝑅𝑆
Assertion
Ref Expression
frege129 (Fun 𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑋))))

Proof of Theorem frege129
StepHypRef Expression
1 frege124.m . . 3 𝑀𝑊
2 frege123.y . . 3 𝑌𝑉
3 frege123.x . . 3 𝑋𝑈
4 frege124.r . . 3 𝑅𝑆
51, 2, 3, 4frege111 42320 . 2 (𝑀((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑋)))
63, 2, 1, 4frege128 42337 . 2 ((𝑀((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑋))) → (Fun 𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑋)))))
75, 6ax-mp 5 1 (Fun 𝑅 → ((¬ 𝑌(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑌) → (𝑌𝑅𝑋 → (¬ 𝑋(t+‘𝑅)𝑀𝑀((t+‘𝑅) ∪ I )𝑋))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2107  cun 3913   class class class wbr 5110   I cid 5535  ccnv 5637  Fun wfun 6495  cfv 6501  t+ctcl 14877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-frege1 42136  ax-frege2 42137  ax-frege8 42155  ax-frege28 42176  ax-frege31 42180  ax-frege41 42191  ax-frege52a 42203  ax-frege52c 42234  ax-frege58b 42247
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-ifp 1063  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-n0 12421  df-z 12507  df-uz 12771  df-seq 13914  df-trcl 14879  df-relexp 14912  df-he 42119
This theorem is referenced by:  frege130  42339
  Copyright terms: Public domain W3C validator