![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsum0diaglem | Structured version Visualization version GIF version |
Description: Lemma for fsum0diag 15741. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
Ref | Expression |
---|---|
fsum0diaglem | ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle1 13522 | . . . . . . 7 ⊢ (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗) | |
2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 0 ≤ 𝑗) |
3 | elfz3nn0 13613 | . . . . . . . . . 10 ⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℕ0) |
5 | 4 | nn0zd 12600 | . . . . . . . 8 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℤ) |
6 | 5 | zred 12682 | . . . . . . 7 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℝ) |
7 | elfzelz 13519 | . . . . . . . . 9 ⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) | |
8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℤ) |
9 | 8 | zred 12682 | . . . . . . 7 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℝ) |
10 | 6, 9 | subge02d 11822 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (0 ≤ 𝑗 ↔ (𝑁 − 𝑗) ≤ 𝑁)) |
11 | 2, 10 | mpbid 231 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ≤ 𝑁) |
12 | 5, 8 | zsubcld 12687 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ∈ ℤ) |
13 | eluz 12852 | . . . . . 6 ⊢ (((𝑁 − 𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) ↔ (𝑁 − 𝑗) ≤ 𝑁)) | |
14 | 12, 5, 13 | syl2anc 583 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) ↔ (𝑁 − 𝑗) ≤ 𝑁)) |
15 | 11, 14 | mpbird 257 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗))) |
16 | fzss2 13559 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) → (0...(𝑁 − 𝑗)) ⊆ (0...𝑁)) | |
17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (0...(𝑁 − 𝑗)) ⊆ (0...𝑁)) |
18 | simpr 484 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ (0...(𝑁 − 𝑗))) | |
19 | 17, 18 | sseldd 3979 | . 2 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ (0...𝑁)) |
20 | elfzelz 13519 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝑘 ∈ ℤ) | |
21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ ℤ) |
22 | 21 | zred 12682 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ ℝ) |
23 | elfzle2 13523 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝑘 ≤ (𝑁 − 𝑗)) | |
24 | 23 | adantl 481 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ≤ (𝑁 − 𝑗)) |
25 | 22, 6, 9, 24 | lesubd 11834 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ≤ (𝑁 − 𝑘)) |
26 | elfzuz 13515 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ (ℤ≥‘0)) | |
27 | 26 | adantr 480 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ (ℤ≥‘0)) |
28 | 5, 21 | zsubcld 12687 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑘) ∈ ℤ) |
29 | elfz5 13511 | . . . 4 ⊢ ((𝑗 ∈ (ℤ≥‘0) ∧ (𝑁 − 𝑘) ∈ ℤ) → (𝑗 ∈ (0...(𝑁 − 𝑘)) ↔ 𝑗 ≤ (𝑁 − 𝑘))) | |
30 | 27, 28, 29 | syl2anc 583 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑗 ∈ (0...(𝑁 − 𝑘)) ↔ 𝑗 ≤ (𝑁 − 𝑘))) |
31 | 25, 30 | mpbird 257 | . 2 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ (0...(𝑁 − 𝑘))) |
32 | 19, 31 | jca 511 | 1 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3944 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11124 ≤ cle 11265 − cmin 11460 ℕ0cn0 12488 ℤcz 12574 ℤ≥cuz 12838 ...cfz 13502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-n0 12489 df-z 12575 df-uz 12839 df-fz 13503 |
This theorem is referenced by: fsum0diag 15741 fprod0diag 15948 |
Copyright terms: Public domain | W3C validator |