| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fsum0diaglem | Structured version Visualization version GIF version | ||
| Description: Lemma for fsum0diag 15750. (Contributed by Mario Carneiro, 28-Apr-2014.) (Revised by Mario Carneiro, 8-Apr-2016.) |
| Ref | Expression |
|---|---|
| fsum0diaglem | ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzle1 13495 | . . . . . . 7 ⊢ (𝑗 ∈ (0...𝑁) → 0 ≤ 𝑗) | |
| 2 | 1 | adantr 480 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 0 ≤ 𝑗) |
| 3 | elfz3nn0 13589 | . . . . . . . . . 10 ⊢ (𝑗 ∈ (0...𝑁) → 𝑁 ∈ ℕ0) | |
| 4 | 3 | adantr 480 | . . . . . . . . 9 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℕ0) |
| 5 | 4 | nn0zd 12562 | . . . . . . . 8 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℤ) |
| 6 | 5 | zred 12645 | . . . . . . 7 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ ℝ) |
| 7 | elfzelz 13492 | . . . . . . . . 9 ⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ ℤ) | |
| 8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℤ) |
| 9 | 8 | zred 12645 | . . . . . . 7 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ ℝ) |
| 10 | 6, 9 | subge02d 11777 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (0 ≤ 𝑗 ↔ (𝑁 − 𝑗) ≤ 𝑁)) |
| 11 | 2, 10 | mpbid 232 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ≤ 𝑁) |
| 12 | 5, 8 | zsubcld 12650 | . . . . . 6 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑗) ∈ ℤ) |
| 13 | eluz 12814 | . . . . . 6 ⊢ (((𝑁 − 𝑗) ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) ↔ (𝑁 − 𝑗) ≤ 𝑁)) | |
| 14 | 12, 5, 13 | syl2anc 584 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) ↔ (𝑁 − 𝑗) ≤ 𝑁)) |
| 15 | 11, 14 | mpbird 257 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗))) |
| 16 | fzss2 13532 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘(𝑁 − 𝑗)) → (0...(𝑁 − 𝑗)) ⊆ (0...𝑁)) | |
| 17 | 15, 16 | syl 17 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (0...(𝑁 − 𝑗)) ⊆ (0...𝑁)) |
| 18 | simpr 484 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ (0...(𝑁 − 𝑗))) | |
| 19 | 17, 18 | sseldd 3950 | . 2 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ (0...𝑁)) |
| 20 | elfzelz 13492 | . . . . . 6 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝑘 ∈ ℤ) | |
| 21 | 20 | adantl 481 | . . . . 5 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ ℤ) |
| 22 | 21 | zred 12645 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ∈ ℝ) |
| 23 | elfzle2 13496 | . . . . 5 ⊢ (𝑘 ∈ (0...(𝑁 − 𝑗)) → 𝑘 ≤ (𝑁 − 𝑗)) | |
| 24 | 23 | adantl 481 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑘 ≤ (𝑁 − 𝑗)) |
| 25 | 22, 6, 9, 24 | lesubd 11789 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ≤ (𝑁 − 𝑘)) |
| 26 | elfzuz 13488 | . . . . 5 ⊢ (𝑗 ∈ (0...𝑁) → 𝑗 ∈ (ℤ≥‘0)) | |
| 27 | 26 | adantr 480 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ (ℤ≥‘0)) |
| 28 | 5, 21 | zsubcld 12650 | . . . 4 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑁 − 𝑘) ∈ ℤ) |
| 29 | elfz5 13484 | . . . 4 ⊢ ((𝑗 ∈ (ℤ≥‘0) ∧ (𝑁 − 𝑘) ∈ ℤ) → (𝑗 ∈ (0...(𝑁 − 𝑘)) ↔ 𝑗 ≤ (𝑁 − 𝑘))) | |
| 30 | 27, 28, 29 | syl2anc 584 | . . 3 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑗 ∈ (0...(𝑁 − 𝑘)) ↔ 𝑗 ≤ (𝑁 − 𝑘))) |
| 31 | 25, 30 | mpbird 257 | . 2 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → 𝑗 ∈ (0...(𝑁 − 𝑘))) |
| 32 | 19, 31 | jca 511 | 1 ⊢ ((𝑗 ∈ (0...𝑁) ∧ 𝑘 ∈ (0...(𝑁 − 𝑗))) → (𝑘 ∈ (0...𝑁) ∧ 𝑗 ∈ (0...(𝑁 − 𝑘)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3917 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ≤ cle 11216 − cmin 11412 ℕ0cn0 12449 ℤcz 12536 ℤ≥cuz 12800 ...cfz 13475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 |
| This theorem is referenced by: fsum0diag 15750 fprod0diag 15959 |
| Copyright terms: Public domain | W3C validator |