MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subge02d Structured version   Visualization version   GIF version

Theorem subge02d 11718
Description: Nonnegative subtraction. (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
leidd.1 (𝜑𝐴 ∈ ℝ)
ltnegd.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
subge02d (𝜑 → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))

Proof of Theorem subge02d
StepHypRef Expression
1 leidd.1 . 2 (𝜑𝐴 ∈ ℝ)
2 ltnegd.2 . 2 (𝜑𝐵 ∈ ℝ)
3 subge02 11642 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))
41, 2, 3syl2anc 584 1 (𝜑 → (0 ≤ 𝐵 ↔ (𝐴𝐵) ≤ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2113   class class class wbr 5095  (class class class)co 7354  cr 11014  0cc0 11015  cle 11156  cmin 11353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356
This theorem is referenced by:  uzsubsubfz  13450  modsubdir  13851  iseraltlem3  15595  fsum0diaglem  15687  mertenslem1  15795  fallfacval4  15954  bitsinv1lem  16356  smueqlem  16405  pcbc  16816  psrbagcon  21866  coe1tmmul2  22193  ovoliunlem1  25433  ioorcl2  25503  vitalilem2  25540  dvfsumlem4  25966  cosordlem  26469  efif1olem2  26482  basellem3  27023  chpub  27161  gausslemma2dlem1a  27306  lgsquadlem1  27321  rplogsumlem2  27426  rpvmasumlem  27428  pntrlog2bnd  27525  pntleml  27552  dnibndlem11  36555  aks6d1c5lem1  42252  jm2.17b  43081  dvnprodlem1  46071  dvnprodlem2  46072  fourierdlem107  46338  etransclem3  46362  etransclem7  46366  etransclem10  46369  etransclem24  46383
  Copyright terms: Public domain W3C validator