![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fsuppmapnn0fz | Structured version Visualization version GIF version |
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for a finite set of sequential integers containing the support of the function. (Contributed by AV, 30-Sep-2019.) (Proof shortened by AV, 6-Oct-2019.) |
Ref | Expression |
---|---|
fsuppmapnn0fz | ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmapnn0ub 13048 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍))) | |
2 | simpllr 794 | . . . . 5 ⊢ ((((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → 𝑍 ∈ 𝑉) | |
3 | simplll 792 | . . . . 5 ⊢ ((((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → 𝐹 ∈ (𝑅 ↑𝑚 ℕ0)) | |
4 | simplr 786 | . . . . 5 ⊢ ((((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → 𝑚 ∈ ℕ0) | |
5 | simpr 478 | . . . . 5 ⊢ ((((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) | |
6 | 2, 3, 4, 5 | suppssfz 13047 | . . . 4 ⊢ ((((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) ∧ ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍)) → (𝐹 supp 𝑍) ⊆ (0...𝑚)) |
7 | 6 | ex 402 | . . 3 ⊢ (((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) ∧ 𝑚 ∈ ℕ0) → (∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍) → (𝐹 supp 𝑍) ⊆ (0...𝑚))) |
8 | 7 | reximdva 3198 | . 2 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (∃𝑚 ∈ ℕ0 ∀𝑥 ∈ ℕ0 (𝑚 < 𝑥 → (𝐹‘𝑥) = 𝑍) → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) |
9 | 1, 8 | syld 47 | 1 ⊢ ((𝐹 ∈ (𝑅 ↑𝑚 ℕ0) ∧ 𝑍 ∈ 𝑉) → (𝐹 finSupp 𝑍 → ∃𝑚 ∈ ℕ0 (𝐹 supp 𝑍) ⊆ (0...𝑚))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ∃wrex 3091 ⊆ wss 3770 class class class wbr 4844 ‘cfv 6102 (class class class)co 6879 supp csupp 7533 ↑𝑚 cmap 8096 finSupp cfsupp 8518 0cc0 10225 < clt 10364 ℕ0cn0 11579 ...cfz 12579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-supp 7534 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-er 7983 df-map 8098 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-fsupp 8519 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-n0 11580 df-z 11666 df-uz 11930 df-fz 12580 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |