MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemB Structured version   Visualization version   GIF version

Theorem cpmadugsumlemB 22763
Description: Lemma B for cpmadugsum 22767. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐡 = (Baseβ€˜π΄)
cpmadugsum.p 𝑃 = (Poly1β€˜π‘…)
cpmadugsum.y π‘Œ = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1β€˜π‘…)
cpmadugsum.e ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
cpmadugsum.m Β· = ( ·𝑠 β€˜π‘Œ)
cpmadugsum.r Γ— = (.rβ€˜π‘Œ)
cpmadugsum.1 1 = (1rβ€˜π‘Œ)
Assertion
Ref Expression
cpmadugsumlemB (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((𝑋 Β· 1 ) Γ— (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))) = (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))))))
Distinct variable groups:   𝐡,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,π‘Œ   Γ— ,𝑖   Β· ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐡(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   Β· (𝑠,𝑏)   Γ— (𝑠,𝑏)   1 (𝑠,𝑏)   ↑ (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   π‘Œ(𝑠,𝑏)

Proof of Theorem cpmadugsumlemB
StepHypRef Expression
1 crngring 20176 . . . . . . . . . . . 12 (𝑅 ∈ CRing β†’ 𝑅 ∈ Ring)
2 cpmadugsum.p . . . . . . . . . . . . 13 𝑃 = (Poly1β€˜π‘…)
32ply1ring 22153 . . . . . . . . . . . 12 (𝑅 ∈ Ring β†’ 𝑃 ∈ Ring)
41, 3syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing β†’ 𝑃 ∈ Ring)
543ad2ant2 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 ∈ Ring)
6 eqid 2727 . . . . . . . . . . 11 (mulGrpβ€˜π‘ƒ) = (mulGrpβ€˜π‘ƒ)
76ringmgp 20170 . . . . . . . . . 10 (𝑃 ∈ Ring β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
85, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
98ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (mulGrpβ€˜π‘ƒ) ∈ Mnd)
10 elfznn0 13618 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) β†’ 𝑖 ∈ β„•0)
1110adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑖 ∈ β„•0)
12 1nn0 12510 . . . . . . . . 9 1 ∈ β„•0
1312a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 1 ∈ β„•0)
1413ad2ant2 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑅 ∈ Ring)
15 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1β€˜π‘…)
16 eqid 2727 . . . . . . . . . . 11 (Baseβ€˜π‘ƒ) = (Baseβ€˜π‘ƒ)
1715, 2, 16vr1cl 22123 . . . . . . . . . 10 (𝑅 ∈ Ring β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
1814, 17syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
1918ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
206, 16mgpbas 20071 . . . . . . . . 9 (Baseβ€˜π‘ƒ) = (Baseβ€˜(mulGrpβ€˜π‘ƒ))
21 cpmadugsum.e . . . . . . . . 9 ↑ = (.gβ€˜(mulGrpβ€˜π‘ƒ))
22 eqid 2727 . . . . . . . . . 10 (.rβ€˜π‘ƒ) = (.rβ€˜π‘ƒ)
236, 22mgpplusg 20069 . . . . . . . . 9 (.rβ€˜π‘ƒ) = (+gβ€˜(mulGrpβ€˜π‘ƒ))
2420, 21, 23mulgnn0dir 19050 . . . . . . . 8 (((mulGrpβ€˜π‘ƒ) ∈ Mnd ∧ (𝑖 ∈ β„•0 ∧ 1 ∈ β„•0 ∧ 𝑋 ∈ (Baseβ€˜π‘ƒ))) β†’ ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.rβ€˜π‘ƒ)(1 ↑ 𝑋)))
259, 11, 13, 19, 24syl13anc 1370 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.rβ€˜π‘ƒ)(1 ↑ 𝑋)))
262ply1crng 22104 . . . . . . . . . . . . 13 (𝑅 ∈ CRing β†’ 𝑃 ∈ CRing)
2726anim2i 616 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
28273adant3 1130 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
29 cpmadugsum.y . . . . . . . . . . . 12 π‘Œ = (𝑁 Mat 𝑃)
3029matsca2 22309 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
3128, 30syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
3231ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
3332fveq2d 6895 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (.rβ€˜π‘ƒ) = (.rβ€˜(Scalarβ€˜π‘Œ)))
34 eqidd 2728 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (𝑖 ↑ 𝑋) = (𝑖 ↑ 𝑋))
3520, 21mulg1 19027 . . . . . . . . . 10 (𝑋 ∈ (Baseβ€˜π‘ƒ) β†’ (1 ↑ 𝑋) = 𝑋)
3618, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (1 ↑ 𝑋) = 𝑋)
3736ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (1 ↑ 𝑋) = 𝑋)
3833, 34, 37oveq123d 7435 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ 𝑋)(.rβ€˜π‘ƒ)(1 ↑ 𝑋)) = ((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋))
3925, 38eqtrd 2767 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋))
404anim2i 616 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
41403adant3 1130 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
4229matring 22332 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) β†’ π‘Œ ∈ Ring)
4341, 42syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
4443ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ π‘Œ ∈ Ring)
45 simpll1 1210 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑁 ∈ Fin)
4614ad2antrr 725 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑅 ∈ Ring)
47 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑠 ∈ β„•0)
48 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))
4948anim1i 614 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (𝑏 ∈ (𝐡 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
50 cpmadugsum.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
51 cpmadugsum.b . . . . . . . . . 10 𝐡 = (Baseβ€˜π΄)
52 cpmadugsum.t . . . . . . . . . 10 𝑇 = (𝑁 matToPolyMat 𝑅)
5350, 51, 2, 29, 52m2pmfzmap 22636 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ β„•0) ∧ (𝑏 ∈ (𝐡 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) β†’ (π‘‡β€˜(π‘β€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
5445, 46, 47, 49, 53syl31anc 1371 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (π‘‡β€˜(π‘β€˜π‘–)) ∈ (Baseβ€˜π‘Œ))
55 eqid 2727 . . . . . . . . 9 (Baseβ€˜π‘Œ) = (Baseβ€˜π‘Œ)
56 cpmadugsum.r . . . . . . . . 9 Γ— = (.rβ€˜π‘Œ)
57 cpmadugsum.1 . . . . . . . . 9 1 = (1rβ€˜π‘Œ)
5855, 56, 57ringlidm 20194 . . . . . . . 8 ((π‘Œ ∈ Ring ∧ (π‘‡β€˜(π‘β€˜π‘–)) ∈ (Baseβ€˜π‘Œ)) β†’ ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–))) = (π‘‡β€˜(π‘β€˜π‘–)))
5944, 54, 58syl2anc 583 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–))) = (π‘‡β€˜(π‘β€˜π‘–)))
6059eqcomd 2733 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (π‘‡β€˜(π‘β€˜π‘–)) = ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–))))
6139, 60oveq12d 7432 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))) = (((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋) Β· ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
6229matassa 22333 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ π‘Œ ∈ AssAlg)
6327, 62syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ AssAlg)
64633adant3 1130 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ AssAlg)
6564ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ π‘Œ ∈ AssAlg)
6631eqcomd 2733 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Scalarβ€˜π‘Œ) = 𝑃)
6766fveq2d 6895 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
6818, 67eleqtrrd 2831 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
6968ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
7020, 21, 9, 11, 19mulgnn0cld 19041 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ))
7167ad2antrr 725 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
7270, 71eleqtrrd 2831 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
7340, 42syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ Ring)
74733adant3 1130 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ Ring)
7555, 57ringidcl 20191 . . . . . . . . 9 (π‘Œ ∈ Ring β†’ 1 ∈ (Baseβ€˜π‘Œ))
7674, 75syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 1 ∈ (Baseβ€˜π‘Œ))
7776ad2antrr 725 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ 1 ∈ (Baseβ€˜π‘Œ))
78 eqid 2727 . . . . . . . 8 (Scalarβ€˜π‘Œ) = (Scalarβ€˜π‘Œ)
79 eqid 2727 . . . . . . . 8 (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜(Scalarβ€˜π‘Œ))
80 eqid 2727 . . . . . . . 8 (.rβ€˜(Scalarβ€˜π‘Œ)) = (.rβ€˜(Scalarβ€˜π‘Œ))
81 cpmadugsum.m . . . . . . . 8 Β· = ( ·𝑠 β€˜π‘Œ)
8255, 78, 79, 80, 81, 56assa2ass 21784 . . . . . . 7 ((π‘Œ ∈ AssAlg ∧ (𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ∧ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ))) ∧ ( 1 ∈ (Baseβ€˜π‘Œ) ∧ (π‘‡β€˜(π‘β€˜π‘–)) ∈ (Baseβ€˜π‘Œ))) β†’ ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) = (((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋) Β· ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
8365, 69, 72, 77, 54, 82syl122anc 1377 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) = (((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋) Β· ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–)))))
8483eqcomd 2733 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (((𝑖 ↑ 𝑋)(.rβ€˜(Scalarβ€˜π‘Œ))𝑋) Β· ( 1 Γ— (π‘‡β€˜(π‘β€˜π‘–)))) = ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))
8561, 84eqtrd 2767 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))) = ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))
8685mpteq2dva 5242 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))))))
8786oveq2d 7430 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))))) = (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))))
88 eqid 2727 . . 3 (0gβ€˜π‘Œ) = (0gβ€˜π‘Œ)
8974adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ π‘Œ ∈ Ring)
90 ovexd 7449 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (0...𝑠) ∈ V)
9129matlmod 22318 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) β†’ π‘Œ ∈ LMod)
9240, 91syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ π‘Œ ∈ LMod)
93923adant3 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ π‘Œ ∈ LMod)
941adantl 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑅 ∈ Ring)
9594, 17syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑋 ∈ (Baseβ€˜π‘ƒ))
9627, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑃 = (Scalarβ€˜π‘Œ))
9796eqcomd 2733 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (Scalarβ€˜π‘Œ) = 𝑃)
9897fveq2d 6895 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
9995, 98eleqtrrd 2831 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) β†’ 𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
100993adant3 1130 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
10143, 75syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ 1 ∈ (Baseβ€˜π‘Œ))
10255, 78, 81, 79lmodvscl 20750 . . . . 5 ((π‘Œ ∈ LMod ∧ 𝑋 ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ∧ 1 ∈ (Baseβ€˜π‘Œ)) β†’ (𝑋 Β· 1 ) ∈ (Baseβ€˜π‘Œ))
10393, 100, 101, 102syl3anc 1369 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (𝑋 Β· 1 ) ∈ (Baseβ€˜π‘Œ))
104103adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑋 Β· 1 ) ∈ (Baseβ€˜π‘Œ))
10593ad2antrr 725 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ π‘Œ ∈ LMod)
10630eqcomd 2733 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ (Scalarβ€˜π‘Œ) = 𝑃)
107106fveq2d 6895 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
10828, 107syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ (Baseβ€˜(Scalarβ€˜π‘Œ)) = (Baseβ€˜π‘ƒ))
109108eleq2d 2814 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) β†’ ((𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ↔ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ)))
110109ad2antrr 725 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ↔ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜π‘ƒ)))
11170, 110mpbird 257 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)))
11255, 78, 81, 79lmodvscl 20750 . . . 4 ((π‘Œ ∈ LMod ∧ (𝑖 ↑ 𝑋) ∈ (Baseβ€˜(Scalarβ€˜π‘Œ)) ∧ (π‘‡β€˜(π‘β€˜π‘–)) ∈ (Baseβ€˜π‘Œ)) β†’ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))) ∈ (Baseβ€˜π‘Œ))
113105, 111, 54, 112syl3anc 1369 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))) ∈ (Baseβ€˜π‘Œ))
114 simpl1 1189 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑁 ∈ Fin)
11514adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑅 ∈ Ring)
116 simprl 770 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ 𝑠 ∈ β„•0)
117 eqid 2727 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))))
118 fzfid 13962 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ β„•0) ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (0...𝑠) ∈ Fin)
119 ovexd 7449 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ β„•0) ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) β†’ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))) ∈ V)
120 fvexd 6906 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ β„•0) ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (0gβ€˜π‘Œ) ∈ V)
121117, 118, 119, 120fsuppmptdm 9391 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ β„•0) ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠))) β†’ (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) finSupp (0gβ€˜π‘Œ))
122114, 115, 116, 48, 121syl31anc 1371 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))) finSupp (0gβ€˜π‘Œ))
12355, 88, 56, 89, 90, 104, 113, 122gsummulc2 20242 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑋 Β· 1 ) Γ— ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))) = ((𝑋 Β· 1 ) Γ— (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))))
12487, 123eqtr2d 2768 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐡) ∧ (𝑠 ∈ β„•0 ∧ 𝑏 ∈ (𝐡 ↑m (0...𝑠)))) β†’ ((𝑋 Β· 1 ) Γ— (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–)))))) = (π‘Œ Ξ£g (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) Β· (π‘‡β€˜(π‘β€˜π‘–))))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  Vcvv 3469   class class class wbr 5142   ↦ cmpt 5225  β€˜cfv 6542  (class class class)co 7414   ↑m cmap 8836  Fincfn 8955   finSupp cfsupp 9377  0cc0 11130  1c1 11131   + caddc 11133  β„•0cn0 12494  ...cfz 13508  Basecbs 17171  .rcmulr 17225  Scalarcsca 17227   ·𝑠 cvsca 17228  0gc0g 17412   Ξ£g cgsu 17413  Mndcmnd 18685  .gcmg 19014  mulGrpcmgp 20065  1rcur 20112  Ringcrg 20164  CRingccrg 20165  LModclmod 20732  AssAlgcasa 21771  var1cv1 22082  Poly1cpl1 22083   Mat cmat 22294   matToPolyMat cmat2pmat 22593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-1cn 11188  ax-icn 11189  ax-addcl 11190  ax-addrcl 11191  ax-mulcl 11192  ax-mulrcl 11193  ax-mulcom 11194  ax-addass 11195  ax-mulass 11196  ax-distr 11197  ax-i2m1 11198  ax-1ne0 11199  ax-1rid 11200  ax-rnegex 11201  ax-rrecex 11202  ax-cnre 11203  ax-pre-lttri 11204  ax-pre-lttrn 11205  ax-pre-ltadd 11206  ax-pre-mulgt0 11207
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8838  df-pm 8839  df-ixp 8908  df-en 8956  df-dom 8957  df-sdom 8958  df-fin 8959  df-fsupp 9378  df-sup 9457  df-oi 9525  df-card 9954  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-sub 11468  df-neg 11469  df-nn 12235  df-2 12297  df-3 12298  df-4 12299  df-5 12300  df-6 12301  df-7 12302  df-8 12303  df-9 12304  df-n0 12495  df-z 12581  df-dec 12700  df-uz 12845  df-fz 13509  df-fzo 13652  df-seq 13991  df-hash 14314  df-struct 17107  df-sets 17124  df-slot 17142  df-ndx 17154  df-base 17172  df-ress 17201  df-plusg 17237  df-mulr 17238  df-sca 17240  df-vsca 17241  df-ip 17242  df-tset 17243  df-ple 17244  df-ds 17246  df-hom 17248  df-cco 17249  df-0g 17414  df-gsum 17415  df-prds 17420  df-pws 17422  df-mre 17557  df-mrc 17558  df-acs 17560  df-mgm 18591  df-sgrp 18670  df-mnd 18686  df-mhm 18731  df-submnd 18732  df-grp 18884  df-minusg 18885  df-sbg 18886  df-mulg 19015  df-subg 19069  df-ghm 19159  df-cntz 19259  df-cmn 19728  df-abl 19729  df-mgp 20066  df-rng 20084  df-ur 20113  df-ring 20166  df-cring 20167  df-subrng 20472  df-subrg 20497  df-lmod 20734  df-lss 20805  df-sra 21047  df-rgmod 21048  df-dsmm 21653  df-frlm 21668  df-assa 21774  df-ascl 21776  df-psr 21829  df-mvr 21830  df-mpl 21831  df-opsr 21833  df-psr1 22086  df-vr1 22087  df-ply1 22088  df-mamu 22273  df-mat 22295  df-mat2pmat 22596
This theorem is referenced by:  cpmadugsumlemF  22765
  Copyright terms: Public domain W3C validator