MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemB Structured version   Visualization version   GIF version

Theorem cpmadugsumlemB 22761
Description: Lemma B for cpmadugsum 22765. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
Assertion
Ref Expression
cpmadugsumlemB (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemB
StepHypRef Expression
1 crngring 20154 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cpmadugsum.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
32ply1ring 22132 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
543ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
6 eqid 2729 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 20148 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
85, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
98ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
10 elfznn0 13581 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
1110adantl 481 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
12 1nn0 12458 . . . . . . . . 9 1 ∈ ℕ0
1312a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ ℕ0)
1413ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
15 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
16 eqid 2729 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
1715, 2, 16vr1cl 22102 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
1814, 17syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
1918ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
206, 16mgpbas 20054 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
21 cpmadugsum.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑃))
22 eqid 2729 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
236, 22mgpplusg 20053 . . . . . . . . 9 (.r𝑃) = (+g‘(mulGrp‘𝑃))
2420, 21, 23mulgnn0dir 19036 . . . . . . . 8 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑋 ∈ (Base‘𝑃))) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
259, 11, 13, 19, 24syl13anc 1374 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
262ply1crng 22083 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2726anim2i 617 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
28273adant3 1132 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
29 cpmadugsum.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
3029matsca2 22307 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3128, 30syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
3231ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 = (Scalar‘𝑌))
3332fveq2d 6862 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (.r𝑃) = (.r‘(Scalar‘𝑌)))
34 eqidd 2730 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) = (𝑖 𝑋))
3520, 21mulg1 19013 . . . . . . . . . 10 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
3618, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 𝑋) = 𝑋)
3736ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (1 𝑋) = 𝑋)
3833, 34, 37oveq123d 7408 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋)(.r𝑃)(1 𝑋)) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
3925, 38eqtrd 2764 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
404anim2i 617 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
41403adant3 1132 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
4229matring 22330 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring)
4341, 42syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
4443ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
45 simpll1 1213 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
4614ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
47 simplrl 776 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
48 simprr 772 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
4948anim1i 615 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
50 cpmadugsum.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
51 cpmadugsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
52 cpmadugsum.t . . . . . . . . . 10 𝑇 = (𝑁 matToPolyMat 𝑅)
5350, 51, 2, 29, 52m2pmfzmap 22634 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
5445, 46, 47, 49, 53syl31anc 1375 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
55 eqid 2729 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
56 cpmadugsum.r . . . . . . . . 9 × = (.r𝑌)
57 cpmadugsum.1 . . . . . . . . 9 1 = (1r𝑌)
5855, 56, 57ringlidm 20178 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
5944, 54, 58syl2anc 584 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
6059eqcomd 2735 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) = ( 1 × (𝑇‘(𝑏𝑖))))
6139, 60oveq12d 7405 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
6229matassa 22331 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg)
6327, 62syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
64633adant3 1132 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ AssAlg)
6564ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg)
6631eqcomd 2735 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
6766fveq2d 6862 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
6818, 67eleqtrrd 2831 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
6968ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
7020, 21, 9, 11, 19mulgnn0cld 19027 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
7167ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
7270, 71eleqtrrd 2831 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
7340, 42syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
74733adant3 1132 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
7555, 57ringidcl 20174 . . . . . . . . 9 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
7674, 75syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
7776ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ (Base‘𝑌))
78 eqid 2729 . . . . . . . 8 (Scalar‘𝑌) = (Scalar‘𝑌)
79 eqid 2729 . . . . . . . 8 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
80 eqid 2729 . . . . . . . 8 (.r‘(Scalar‘𝑌)) = (.r‘(Scalar‘𝑌))
81 cpmadugsum.m . . . . . . . 8 · = ( ·𝑠𝑌)
8255, 78, 79, 80, 81, 56assa2ass 21772 . . . . . . 7 ((𝑌 ∈ AssAlg ∧ (𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌))) ∧ ( 1 ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8365, 69, 72, 77, 54, 82syl122anc 1381 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8483eqcomd 2735 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8561, 84eqtrd 2764 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8685mpteq2dva 5200 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
8786oveq2d 7403 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
88 eqid 2729 . . 3 (0g𝑌) = (0g𝑌)
8974adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
90 ovexd 7422 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (0...𝑠) ∈ V)
9129matlmod 22316 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod)
9240, 91syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
93923adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
941adantl 481 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9594, 17syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
9627, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
9796eqcomd 2735 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
9897fveq2d 6862 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
9995, 98eleqtrrd 2831 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
100993adant3 1132 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
10143, 75syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
10255, 78, 81, 79lmodvscl 20784 . . . . 5 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10393, 100, 101, 102syl3anc 1373 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
104103adantr 480 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10593ad2antrr 726 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
10630eqcomd 2735 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
107106fveq2d 6862 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
10828, 107syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
109108eleq2d 2814 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
110109ad2antrr 726 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
11170, 110mpbird 257 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
11255, 78, 81, 79lmodvscl 20784 . . . 4 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
113105, 111, 54, 112syl3anc 1373 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
114 simpl1 1192 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
11514adantr 480 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
116 simprl 770 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
117 eqid 2729 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
118 fzfid 13938 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0...𝑠) ∈ Fin)
119 ovexd 7422 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ V)
120 fvexd 6873 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0g𝑌) ∈ V)
121117, 118, 119, 120fsuppmptdm 9327 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
122114, 115, 116, 48, 121syl31anc 1375 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
12355, 88, 56, 89, 90, 104, 113, 122gsummulc2 20226 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
12487, 123eqtr2d 2765 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918   finSupp cfsupp 9312  0cc0 11068  1c1 11069   + caddc 11071  0cn0 12442  ...cfz 13468  Basecbs 17179  .rcmulr 17221  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  LModclmod 20766  AssAlgcasa 21759  var1cv1 22060  Poly1cpl1 22061   Mat cmat 22294   matToPolyMat cmat2pmat 22591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-ofr 7654  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-mulg 19000  df-subg 19055  df-ghm 19145  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-subrng 20455  df-subrg 20479  df-lmod 20768  df-lss 20838  df-sra 21080  df-rgmod 21081  df-dsmm 21641  df-frlm 21656  df-assa 21762  df-ascl 21764  df-psr 21818  df-mvr 21819  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-vr1 22065  df-ply1 22066  df-mamu 22278  df-mat 22295  df-mat2pmat 22594
This theorem is referenced by:  cpmadugsumlemF  22763
  Copyright terms: Public domain W3C validator