Proof of Theorem cpmadugsumlemB
Step | Hyp | Ref
| Expression |
1 | | crngring 19976 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
2 | | cpmadugsum.p |
. . . . . . . . . . . . 13
⊢ 𝑃 = (Poly1‘𝑅) |
3 | 2 | ply1ring 21619 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
4 | 1, 3 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Ring) |
5 | 4 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
6 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
7 | 6 | ringmgp 19970 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring →
(mulGrp‘𝑃) ∈
Mnd) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (mulGrp‘𝑃) ∈ Mnd) |
9 | 8 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd) |
10 | | elfznn0 13534 |
. . . . . . . . 9
⊢ (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0) |
11 | 10 | adantl 482 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0) |
12 | | 1nn0 12429 |
. . . . . . . . 9
⊢ 1 ∈
ℕ0 |
13 | 12 | a1i 11 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈
ℕ0) |
14 | 1 | 3ad2ant2 1134 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Ring) |
15 | | cpmadugsum.x |
. . . . . . . . . . 11
⊢ 𝑋 = (var1‘𝑅) |
16 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(Base‘𝑃) =
(Base‘𝑃) |
17 | 15, 2, 16 | vr1cl 21588 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
18 | 14, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘𝑃)) |
19 | 18 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃)) |
20 | 6, 16 | mgpbas 19902 |
. . . . . . . . 9
⊢
(Base‘𝑃) =
(Base‘(mulGrp‘𝑃)) |
21 | | cpmadugsum.e |
. . . . . . . . 9
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
22 | | eqid 2736 |
. . . . . . . . . 10
⊢
(.r‘𝑃) = (.r‘𝑃) |
23 | 6, 22 | mgpplusg 19900 |
. . . . . . . . 9
⊢
(.r‘𝑃) = (+g‘(mulGrp‘𝑃)) |
24 | 20, 21, 23 | mulgnn0dir 18906 |
. . . . . . . 8
⊢
(((mulGrp‘𝑃)
∈ Mnd ∧ (𝑖 ∈
ℕ0 ∧ 1 ∈ ℕ0 ∧ 𝑋 ∈ (Base‘𝑃))) → ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.r‘𝑃)(1 ↑ 𝑋))) |
25 | 9, 11, 13, 19, 24 | syl13anc 1372 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.r‘𝑃)(1 ↑ 𝑋))) |
26 | 2 | ply1crng 21569 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
27 | 26 | anim2i 617 |
. . . . . . . . . . . 12
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
28 | 27 | 3adant3 1132 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing)) |
29 | | cpmadugsum.y |
. . . . . . . . . . . 12
⊢ 𝑌 = (𝑁 Mat 𝑃) |
30 | 29 | matsca2 21769 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
31 | 28, 30 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑃 = (Scalar‘𝑌)) |
32 | 31 | ad2antrr 724 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 = (Scalar‘𝑌)) |
33 | 32 | fveq2d 6846 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (.r‘𝑃) =
(.r‘(Scalar‘𝑌))) |
34 | | eqidd 2737 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) = (𝑖 ↑ 𝑋)) |
35 | 20, 21 | mulg1 18883 |
. . . . . . . . . 10
⊢ (𝑋 ∈ (Base‘𝑃) → (1 ↑ 𝑋) = 𝑋) |
36 | 18, 35 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (1 ↑ 𝑋) = 𝑋) |
37 | 36 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (1 ↑ 𝑋) = 𝑋) |
38 | 33, 34, 37 | oveq123d 7378 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋)(.r‘𝑃)(1 ↑ 𝑋)) = ((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋)) |
39 | 25, 38 | eqtrd 2776 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) ↑ 𝑋) = ((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋)) |
40 | 4 | anim2i 617 |
. . . . . . . . . . 11
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
41 | 40 | 3adant3 1132 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring)) |
42 | 29 | matring 21792 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
44 | 43 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring) |
45 | | simpll1 1212 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin) |
46 | 14 | ad2antrr 724 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring) |
47 | | simplrl 775 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0) |
48 | | simprr 771 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑏 ∈ (𝐵 ↑m (0...𝑠))) |
49 | 48 | anim1i 615 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) |
50 | | cpmadugsum.a |
. . . . . . . . . 10
⊢ 𝐴 = (𝑁 Mat 𝑅) |
51 | | cpmadugsum.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐴) |
52 | | cpmadugsum.t |
. . . . . . . . . 10
⊢ 𝑇 = (𝑁 matToPolyMat 𝑅) |
53 | 50, 51, 2, 29, 52 | m2pmfzmap 22096 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ (𝑏 ∈ (𝐵 ↑m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
54 | 45, 46, 47, 49, 53 | syl31anc 1373 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) |
55 | | eqid 2736 |
. . . . . . . . 9
⊢
(Base‘𝑌) =
(Base‘𝑌) |
56 | | cpmadugsum.r |
. . . . . . . . 9
⊢ × =
(.r‘𝑌) |
57 | | cpmadugsum.1 |
. . . . . . . . 9
⊢ 1 =
(1r‘𝑌) |
58 | 55, 56, 57 | ringlidm 19992 |
. . . . . . . 8
⊢ ((𝑌 ∈ Ring ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ( 1 × (𝑇‘(𝑏‘𝑖))) = (𝑇‘(𝑏‘𝑖))) |
59 | 44, 54, 58 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ( 1 × (𝑇‘(𝑏‘𝑖))) = (𝑇‘(𝑏‘𝑖))) |
60 | 59 | eqcomd 2742 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏‘𝑖)) = ( 1 × (𝑇‘(𝑏‘𝑖)))) |
61 | 39, 60 | oveq12d 7375 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = (((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏‘𝑖))))) |
62 | 29 | matassa 21793 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg) |
63 | 27, 62 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg) |
64 | 63 | 3adant3 1132 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ AssAlg) |
65 | 64 | ad2antrr 724 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg) |
66 | 31 | eqcomd 2742 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Scalar‘𝑌) = 𝑃) |
67 | 66 | fveq2d 6846 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
68 | 18, 67 | eleqtrrd 2841 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌))) |
69 | 68 | ad2antrr 724 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘(Scalar‘𝑌))) |
70 | 20, 21, 9, 11, 19 | mulgnn0cld 18897 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘𝑃)) |
71 | 67 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
72 | 70, 71 | eleqtrrd 2841 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
73 | 40, 42 | syl 17 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring) |
74 | 73 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ Ring) |
75 | 55, 57 | ringidcl 19989 |
. . . . . . . . 9
⊢ (𝑌 ∈ Ring → 1 ∈
(Base‘𝑌)) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑌)) |
77 | 76 | ad2antrr 724 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ (Base‘𝑌)) |
78 | | eqid 2736 |
. . . . . . . 8
⊢
(Scalar‘𝑌) =
(Scalar‘𝑌) |
79 | | eqid 2736 |
. . . . . . . 8
⊢
(Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌)) |
80 | | eqid 2736 |
. . . . . . . 8
⊢
(.r‘(Scalar‘𝑌)) =
(.r‘(Scalar‘𝑌)) |
81 | | cpmadugsum.m |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑌) |
82 | 55, 78, 79, 80, 81, 56 | assa2ass 21269 |
. . . . . . 7
⊢ ((𝑌 ∈ AssAlg ∧ (𝑋 ∈
(Base‘(Scalar‘𝑌)) ∧ (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) ∧ ( 1 ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌))) → ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏‘𝑖))))) |
83 | 65, 69, 72, 77, 54, 82 | syl122anc 1379 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏‘𝑖))))) |
84 | 83 | eqcomd 2742 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 ↑ 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏‘𝑖)))) = ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
85 | 61, 84 | eqtrd 2776 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) = ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) |
86 | 85 | mpteq2dva 5205 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |
87 | 86 | oveq2d 7373 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
88 | | eqid 2736 |
. . 3
⊢
(0g‘𝑌) = (0g‘𝑌) |
89 | | eqid 2736 |
. . 3
⊢
(+g‘𝑌) = (+g‘𝑌) |
90 | 74 | adantr 481 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑌 ∈ Ring) |
91 | | ovexd 7392 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (0...𝑠) ∈ V) |
92 | 29 | matlmod 21778 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod) |
93 | 40, 92 | syl 17 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod) |
94 | 93 | 3adant3 1132 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑌 ∈ LMod) |
95 | 1 | adantl 482 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
96 | 95, 17 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
97 | 27, 30 | syl 17 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌)) |
98 | 97 | eqcomd 2742 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Scalar‘𝑌) = 𝑃) |
99 | 98 | fveq2d 6846 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
(Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
100 | 96, 99 | eleqtrrd 2841 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈
(Base‘(Scalar‘𝑌))) |
101 | 100 | 3adant3 1132 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌))) |
102 | 43, 75 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 1 ∈ (Base‘𝑌)) |
103 | 55, 78, 81, 79 | lmodvscl 20339 |
. . . . 5
⊢ ((𝑌 ∈ LMod ∧ 𝑋 ∈
(Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
104 | 94, 101, 102, 103 | syl3anc 1371 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
105 | 104 | adantr 481 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑋 · 1 ) ∈ (Base‘𝑌)) |
106 | 94 | ad2antrr 724 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod) |
107 | 30 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) →
(Scalar‘𝑌) = 𝑃) |
108 | 107 | fveq2d 6846 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) →
(Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
109 | 28, 108 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃)) |
110 | 109 | eleq2d 2823 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
111 | 110 | ad2antrr 724 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 ↑ 𝑋) ∈ (Base‘𝑃))) |
112 | 70, 111 | mpbird 256 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌))) |
113 | 55, 78, 81, 79 | lmodvscl 20339 |
. . . 4
⊢ ((𝑌 ∈ LMod ∧ (𝑖 ↑ 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏‘𝑖)) ∈ (Base‘𝑌)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
114 | 106, 112,
54, 113 | syl3anc 1371 |
. . 3
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ (Base‘𝑌)) |
115 | | simpl1 1191 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑁 ∈ Fin) |
116 | 14 | adantr 481 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑅 ∈ Ring) |
117 | | simprl 769 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → 𝑠 ∈ ℕ0) |
118 | | eqid 2736 |
. . . . 5
⊢ (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) |
119 | | fzfid 13878 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (0...𝑠) ∈ Fin) |
120 | | ovexd 7392 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))) ∈ V) |
121 | | fvexd 6857 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) →
(0g‘𝑌)
∈ V) |
122 | 118, 119,
120, 121 | fsuppmptdm 9316 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0)
∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) finSupp (0g‘𝑌)) |
123 | 115, 116,
117, 48, 122 | syl31anc 1373 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))) finSupp (0g‘𝑌)) |
124 | 55, 88, 89, 56, 90, 91, 105, 114, 123 | gsummulc2 20031 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖))))))) |
125 | 87, 124 | eqtr2d 2777 |
1
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ (𝑠 ∈ ℕ0 ∧ 𝑏 ∈ (𝐵 ↑m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) ↑ 𝑋) · (𝑇‘(𝑏‘𝑖)))))) |