MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemB Structured version   Visualization version   GIF version

Theorem cpmadugsumlemB 21743
Description: Lemma B for cpmadugsum 21747. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
Assertion
Ref Expression
cpmadugsumlemB (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑖,𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemB
StepHypRef Expression
1 crngring 19546 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 cpmadugsum.p . . . . . . . . . . . . 13 𝑃 = (Poly1𝑅)
32ply1ring 21141 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
41, 3syl 17 . . . . . . . . . . 11 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
543ad2ant2 1136 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
6 eqid 2734 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
76ringmgp 19540 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
85, 7syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
98ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
10 elfznn0 13188 . . . . . . . . 9 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
1110adantl 485 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
12 1nn0 12089 . . . . . . . . 9 1 ∈ ℕ0
1312a1i 11 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ ℕ0)
1413ad2ant2 1136 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
15 cpmadugsum.x . . . . . . . . . . 11 𝑋 = (var1𝑅)
16 eqid 2734 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
1715, 2, 16vr1cl 21110 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
1814, 17syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
1918ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
206, 16mgpbas 19482 . . . . . . . . 9 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
21 cpmadugsum.e . . . . . . . . 9 = (.g‘(mulGrp‘𝑃))
22 eqid 2734 . . . . . . . . . 10 (.r𝑃) = (.r𝑃)
236, 22mgpplusg 19480 . . . . . . . . 9 (.r𝑃) = (+g‘(mulGrp‘𝑃))
2420, 21, 23mulgnn0dir 18493 . . . . . . . 8 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0𝑋 ∈ (Base‘𝑃))) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
259, 11, 13, 19, 24syl13anc 1374 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r𝑃)(1 𝑋)))
262ply1crng 21091 . . . . . . . . . . . . 13 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
2726anim2i 620 . . . . . . . . . . . 12 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
28273adant3 1134 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
29 cpmadugsum.y . . . . . . . . . . . 12 𝑌 = (𝑁 Mat 𝑃)
3029matsca2 21289 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
3128, 30syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
3231ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑃 = (Scalar‘𝑌))
3332fveq2d 6710 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (.r𝑃) = (.r‘(Scalar‘𝑌)))
34 eqidd 2735 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) = (𝑖 𝑋))
3520, 21mulg1 18471 . . . . . . . . . 10 (𝑋 ∈ (Base‘𝑃) → (1 𝑋) = 𝑋)
3618, 35syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (1 𝑋) = 𝑋)
3736ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (1 𝑋) = 𝑋)
3833, 34, 37oveq123d 7223 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋)(.r𝑃)(1 𝑋)) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
3925, 38eqtrd 2774 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 + 1) 𝑋) = ((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋))
404anim2i 620 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
41403adant3 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
4229matring 21312 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring)
4341, 42syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
4443ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ Ring)
45 simpll1 1214 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
4614ad2antrr 726 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
47 simplrl 777 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
48 simprr 773 . . . . . . . . . 10 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
4948anim1i 618 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
50 cpmadugsum.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
51 cpmadugsum.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
52 cpmadugsum.t . . . . . . . . . 10 𝑇 = (𝑁 matToPolyMat 𝑅)
5350, 51, 2, 29, 52m2pmfzmap 21616 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
5445, 46, 47, 49, 53syl31anc 1375 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
55 eqid 2734 . . . . . . . . 9 (Base‘𝑌) = (Base‘𝑌)
56 cpmadugsum.r . . . . . . . . 9 × = (.r𝑌)
57 cpmadugsum.1 . . . . . . . . 9 1 = (1r𝑌)
5855, 56, 57ringlidm 19561 . . . . . . . 8 ((𝑌 ∈ Ring ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
5944, 54, 58syl2anc 587 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ( 1 × (𝑇‘(𝑏𝑖))) = (𝑇‘(𝑏𝑖)))
6059eqcomd 2740 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) = ( 1 × (𝑇‘(𝑏𝑖))))
6139, 60oveq12d 7220 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
6229matassa 21313 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg)
6327, 62syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
64633adant3 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ AssAlg)
6564ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg)
6631eqcomd 2740 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
6766fveq2d 6710 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
6818, 67eleqtrrd 2837 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
6968ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
7020, 21mulgnn0cl 18480 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑖 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑖 𝑋) ∈ (Base‘𝑃))
719, 11, 19, 70syl3anc 1373 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
7267ad2antrr 726 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
7371, 72eleqtrrd 2837 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
7440, 42syl 17 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
75743adant3 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
7655, 57ringidcl 19558 . . . . . . . . 9 (𝑌 ∈ Ring → 1 ∈ (Base‘𝑌))
7775, 76syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
7877ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 1 ∈ (Base‘𝑌))
79 eqid 2734 . . . . . . . 8 (Scalar‘𝑌) = (Scalar‘𝑌)
80 eqid 2734 . . . . . . . 8 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
81 eqid 2734 . . . . . . . 8 (.r‘(Scalar‘𝑌)) = (.r‘(Scalar‘𝑌))
82 cpmadugsum.m . . . . . . . 8 · = ( ·𝑠𝑌)
8355, 79, 80, 81, 82, 56assa2ass 20797 . . . . . . 7 ((𝑌 ∈ AssAlg ∧ (𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌))) ∧ ( 1 ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8465, 69, 73, 78, 54, 83syl122anc 1381 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))))
8584eqcomd 2740 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 𝑋)(.r‘(Scalar‘𝑌))𝑋) · ( 1 × (𝑇‘(𝑏𝑖)))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8661, 85eqtrd 2774 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))) = ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))
8786mpteq2dva 5139 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))))
8887oveq2d 7218 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
89 eqid 2734 . . 3 (0g𝑌) = (0g𝑌)
90 eqid 2734 . . 3 (+g𝑌) = (+g𝑌)
9175adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
92 ovexd 7237 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (0...𝑠) ∈ V)
9329matlmod 21298 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod)
9440, 93syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ LMod)
95943adant3 1134 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
961adantl 485 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
9796, 17syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
9827, 30syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
9998eqcomd 2740 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
10099fveq2d 6710 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
10197, 100eleqtrrd 2837 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
1021013adant3 1134 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘(Scalar‘𝑌)))
10343, 76syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 1 ∈ (Base‘𝑌))
10455, 79, 82, 80lmodvscl 19888 . . . . 5 ((𝑌 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑌)) ∧ 1 ∈ (Base‘𝑌)) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10595, 102, 103, 104syl3anc 1373 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑋 · 1 ) ∈ (Base‘𝑌))
106105adantr 484 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑋 · 1 ) ∈ (Base‘𝑌))
10795ad2antrr 726 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
10830eqcomd 2740 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Scalar‘𝑌) = 𝑃)
109108fveq2d 6710 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
11028, 109syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
111110eleq2d 2819 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
112111ad2antrr 726 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
11371, 112mpbird 260 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
11455, 79, 82, 80lmodvscl 19888 . . . 4 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
115107, 113, 54, 114syl3anc 1373 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
116 simpl1 1193 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
11714adantr 484 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
118 simprl 771 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
119 eqid 2734 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
120 fzfid 13529 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0...𝑠) ∈ Fin)
121 ovexd 7237 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ V)
122 fvexd 6721 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0g𝑌) ∈ V)
123119, 120, 121, 122fsuppmptdm 8985 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
124116, 117, 118, 48, 123syl31anc 1375 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
12555, 89, 90, 56, 91, 92, 106, 115, 124gsummulc2 19597 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑋 · 1 ) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
12688, 125eqtr2d 2775 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑋 · 1 ) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ (((𝑖 + 1) 𝑋) · (𝑇‘(𝑏𝑖))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  Vcvv 3401   class class class wbr 5043  cmpt 5124  cfv 6369  (class class class)co 7202  m cmap 8497  Fincfn 8615   finSupp cfsupp 8974  0cc0 10712  1c1 10713   + caddc 10715  0cn0 12073  ...cfz 13078  Basecbs 16684  +gcplusg 16767  .rcmulr 16768  Scalarcsca 16770   ·𝑠 cvsca 16771  0gc0g 16916   Σg cgsu 16917  Mndcmnd 18145  .gcmg 18460  mulGrpcmgp 19476  1rcur 19488  Ringcrg 19534  CRingccrg 19535  LModclmod 19871  AssAlgcasa 20784  var1cv1 21069  Poly1cpl1 21070   Mat cmat 21276   matToPolyMat cmat2pmat 21573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-ot 4540  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-ofr 7459  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-fz 13079  df-fzo 13222  df-seq 13558  df-hash 13880  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-hom 16791  df-cco 16792  df-0g 16918  df-gsum 16919  df-prds 16924  df-pws 16926  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-submnd 18191  df-grp 18340  df-minusg 18341  df-sbg 18342  df-mulg 18461  df-subg 18512  df-ghm 18592  df-cntz 18683  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-subrg 19770  df-lmod 19873  df-lss 19941  df-sra 20181  df-rgmod 20182  df-dsmm 20666  df-frlm 20681  df-assa 20787  df-ascl 20789  df-psr 20840  df-mvr 20841  df-mpl 20842  df-opsr 20844  df-psr1 21073  df-vr1 21074  df-ply1 21075  df-mamu 21255  df-mat 21277  df-mat2pmat 21576
This theorem is referenced by:  cpmadugsumlemF  21745
  Copyright terms: Public domain W3C validator