Step | Hyp | Ref
| Expression |
1 | | crngring 20061 |
. . . . . . . . . . . 12
β’ (π
β CRing β π
β Ring) |
2 | | cpmadugsum.p |
. . . . . . . . . . . . 13
β’ π = (Poly1βπ
) |
3 | 2 | ply1ring 21761 |
. . . . . . . . . . . 12
β’ (π
β Ring β π β Ring) |
4 | 1, 3 | syl 17 |
. . . . . . . . . . 11
β’ (π
β CRing β π β Ring) |
5 | 4 | 3ad2ant2 1134 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
6 | | eqid 2732 |
. . . . . . . . . . 11
β’
(mulGrpβπ) =
(mulGrpβπ) |
7 | 6 | ringmgp 20055 |
. . . . . . . . . 10
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
8 | 5, 7 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (mulGrpβπ) β Mnd) |
9 | 8 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (mulGrpβπ) β Mnd) |
10 | | elfznn0 13590 |
. . . . . . . . 9
β’ (π β (0...π ) β π β β0) |
11 | 10 | adantl 482 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β β0) |
12 | | 1nn0 12484 |
. . . . . . . . 9
β’ 1 β
β0 |
13 | 12 | a1i 11 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β 1 β
β0) |
14 | 1 | 3ad2ant2 1134 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
β Ring) |
15 | | cpmadugsum.x |
. . . . . . . . . . 11
β’ π = (var1βπ
) |
16 | | eqid 2732 |
. . . . . . . . . . 11
β’
(Baseβπ) =
(Baseβπ) |
17 | 15, 2, 16 | vr1cl 21732 |
. . . . . . . . . 10
β’ (π
β Ring β π β (Baseβπ)) |
18 | 14, 17 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β (Baseβπ)) |
19 | 18 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β (Baseβπ)) |
20 | 6, 16 | mgpbas 19987 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
21 | | cpmadugsum.e |
. . . . . . . . 9
β’ β =
(.gβ(mulGrpβπ)) |
22 | | eqid 2732 |
. . . . . . . . . 10
β’
(.rβπ) = (.rβπ) |
23 | 6, 22 | mgpplusg 19985 |
. . . . . . . . 9
β’
(.rβπ) = (+gβ(mulGrpβπ)) |
24 | 20, 21, 23 | mulgnn0dir 18978 |
. . . . . . . 8
β’
(((mulGrpβπ)
β Mnd β§ (π β
β0 β§ 1 β β0 β§ π β (Baseβπ))) β ((π + 1) β π) = ((π β π)(.rβπ)(1 β π))) |
25 | 9, 11, 13, 19, 24 | syl13anc 1372 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π + 1) β π) = ((π β π)(.rβπ)(1 β π))) |
26 | 2 | ply1crng 21713 |
. . . . . . . . . . . . 13
β’ (π
β CRing β π β CRing) |
27 | 26 | anim2i 617 |
. . . . . . . . . . . 12
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π β CRing)) |
28 | 27 | 3adant3 1132 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π β Fin β§ π β CRing)) |
29 | | cpmadugsum.y |
. . . . . . . . . . . 12
β’ π = (π Mat π) |
30 | 29 | matsca2 21913 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π β CRing) β π = (Scalarβπ)) |
31 | 28, 30 | syl 17 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π = (Scalarβπ)) |
32 | 31 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π = (Scalarβπ)) |
33 | 32 | fveq2d 6892 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (.rβπ) =
(.rβ(Scalarβπ))) |
34 | | eqidd 2733 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) = (π β π)) |
35 | 20, 21 | mulg1 18955 |
. . . . . . . . . 10
β’ (π β (Baseβπ) β (1 β π) = π) |
36 | 18, 35 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (1 β π) = π) |
37 | 36 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (1 β π) = π) |
38 | 33, 34, 37 | oveq123d 7426 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π β π)(.rβπ)(1 β π)) = ((π β π)(.rβ(Scalarβπ))π)) |
39 | 25, 38 | eqtrd 2772 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π + 1) β π) = ((π β π)(.rβ(Scalarβπ))π)) |
40 | 4 | anim2i 617 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π β Ring)) |
41 | 40 | 3adant3 1132 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π β Fin β§ π β Ring)) |
42 | 29 | matring 21936 |
. . . . . . . . . 10
β’ ((π β Fin β§ π β Ring) β π β Ring) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
44 | 43 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β Ring) |
45 | | simpll1 1212 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β Fin) |
46 | 14 | ad2antrr 724 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π
β Ring) |
47 | | simplrl 775 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β β0) |
48 | | simprr 771 |
. . . . . . . . . 10
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β (π΅ βm (0...π ))) |
49 | 48 | anim1i 615 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β (π΅ βm (0...π )) β§ π β (0...π ))) |
50 | | cpmadugsum.a |
. . . . . . . . . 10
β’ π΄ = (π Mat π
) |
51 | | cpmadugsum.b |
. . . . . . . . . 10
β’ π΅ = (Baseβπ΄) |
52 | | cpmadugsum.t |
. . . . . . . . . 10
β’ π = (π matToPolyMat π
) |
53 | 50, 51, 2, 29, 52 | m2pmfzmap 22240 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ (π β (π΅ βm (0...π )) β§ π β (0...π ))) β (πβ(πβπ)) β (Baseβπ)) |
54 | 45, 46, 47, 49, 53 | syl31anc 1373 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (πβ(πβπ)) β (Baseβπ)) |
55 | | eqid 2732 |
. . . . . . . . 9
β’
(Baseβπ) =
(Baseβπ) |
56 | | cpmadugsum.r |
. . . . . . . . 9
β’ Γ =
(.rβπ) |
57 | | cpmadugsum.1 |
. . . . . . . . 9
β’ 1 =
(1rβπ) |
58 | 55, 56, 57 | ringlidm 20079 |
. . . . . . . 8
β’ ((π β Ring β§ (πβ(πβπ)) β (Baseβπ)) β ( 1 Γ (πβ(πβπ))) = (πβ(πβπ))) |
59 | 44, 54, 58 | syl2anc 584 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ( 1 Γ (πβ(πβπ))) = (πβ(πβπ))) |
60 | 59 | eqcomd 2738 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (πβ(πβπ)) = ( 1 Γ (πβ(πβπ)))) |
61 | 39, 60 | oveq12d 7423 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (((π + 1) β π) Β· (πβ(πβπ))) = (((π β π)(.rβ(Scalarβπ))π) Β· ( 1 Γ (πβ(πβπ))))) |
62 | 29 | matassa 21937 |
. . . . . . . . . 10
β’ ((π β Fin β§ π β CRing) β π β AssAlg) |
63 | 27, 62 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β π β AssAlg) |
64 | 63 | 3adant3 1132 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β AssAlg) |
65 | 64 | ad2antrr 724 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β AssAlg) |
66 | 31 | eqcomd 2738 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Scalarβπ) = π) |
67 | 66 | fveq2d 6892 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
68 | 18, 67 | eleqtrrd 2836 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β (Baseβ(Scalarβπ))) |
69 | 68 | ad2antrr 724 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β (Baseβ(Scalarβπ))) |
70 | 20, 21, 9, 11, 19 | mulgnn0cld 18969 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβπ)) |
71 | 67 | ad2antrr 724 |
. . . . . . . 8
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
72 | 70, 71 | eleqtrrd 2836 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβ(Scalarβπ))) |
73 | 40, 42 | syl 17 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β π β Ring) |
74 | 73 | 3adant3 1132 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
75 | 55, 57 | ringidcl 20076 |
. . . . . . . . 9
β’ (π β Ring β 1 β
(Baseβπ)) |
76 | 74, 75 | syl 17 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β 1 β (Baseβπ)) |
77 | 76 | ad2antrr 724 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β 1 β (Baseβπ)) |
78 | | eqid 2732 |
. . . . . . . 8
β’
(Scalarβπ) =
(Scalarβπ) |
79 | | eqid 2732 |
. . . . . . . 8
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
80 | | eqid 2732 |
. . . . . . . 8
β’
(.rβ(Scalarβπ)) =
(.rβ(Scalarβπ)) |
81 | | cpmadugsum.m |
. . . . . . . 8
β’ Β· = (
Β·π βπ) |
82 | 55, 78, 79, 80, 81, 56 | assa2ass 21409 |
. . . . . . 7
β’ ((π β AssAlg β§ (π β
(Baseβ(Scalarβπ)) β§ (π β π) β (Baseβ(Scalarβπ))) β§ ( 1 β (Baseβπ) β§ (πβ(πβπ)) β (Baseβπ))) β ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ)))) = (((π β π)(.rβ(Scalarβπ))π) Β· ( 1 Γ (πβ(πβπ))))) |
83 | 65, 69, 72, 77, 54, 82 | syl122anc 1379 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ)))) = (((π β π)(.rβ(Scalarβπ))π) Β· ( 1 Γ (πβ(πβπ))))) |
84 | 83 | eqcomd 2738 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (((π β π)(.rβ(Scalarβπ))π) Β· ( 1 Γ (πβ(πβπ)))) = ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ))))) |
85 | 61, 84 | eqtrd 2772 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (((π + 1) β π) Β· (πβ(πβπ))) = ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ))))) |
86 | 85 | mpteq2dva 5247 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π β (0...π ) β¦ (((π + 1) β π) Β· (πβ(πβπ)))) = (π β (0...π ) β¦ ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ)))))) |
87 | 86 | oveq2d 7421 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π Ξ£g (π β (0...π ) β¦ (((π + 1) β π) Β· (πβ(πβπ))))) = (π Ξ£g (π β (0...π ) β¦ ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ))))))) |
88 | | eqid 2732 |
. . 3
β’
(0gβπ) = (0gβπ) |
89 | 74 | adantr 481 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β Ring) |
90 | | ovexd 7440 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (0...π ) β V) |
91 | 29 | matlmod 21922 |
. . . . . . 7
β’ ((π β Fin β§ π β Ring) β π β LMod) |
92 | 40, 91 | syl 17 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β π β LMod) |
93 | 92 | 3adant3 1132 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β LMod) |
94 | 1 | adantl 482 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π
β Ring) |
95 | 94, 17 | syl 17 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β π β (Baseβπ)) |
96 | 27, 30 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β π = (Scalarβπ)) |
97 | 96 | eqcomd 2738 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β
(Scalarβπ) = π) |
98 | 97 | fveq2d 6892 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β
(Baseβ(Scalarβπ)) = (Baseβπ)) |
99 | 95, 98 | eleqtrrd 2836 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β π β
(Baseβ(Scalarβπ))) |
100 | 99 | 3adant3 1132 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β (Baseβ(Scalarβπ))) |
101 | 43, 75 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β 1 β (Baseβπ)) |
102 | 55, 78, 81, 79 | lmodvscl 20481 |
. . . . 5
β’ ((π β LMod β§ π β
(Baseβ(Scalarβπ)) β§ 1 β (Baseβπ)) β (π Β· 1 ) β (Baseβπ)) |
103 | 93, 100, 101, 102 | syl3anc 1371 |
. . . 4
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π Β· 1 ) β (Baseβπ)) |
104 | 103 | adantr 481 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π Β· 1 ) β (Baseβπ)) |
105 | 93 | ad2antrr 724 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β LMod) |
106 | 30 | eqcomd 2738 |
. . . . . . . . 9
β’ ((π β Fin β§ π β CRing) β
(Scalarβπ) = π) |
107 | 106 | fveq2d 6892 |
. . . . . . . 8
β’ ((π β Fin β§ π β CRing) β
(Baseβ(Scalarβπ)) = (Baseβπ)) |
108 | 28, 107 | syl 17 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
109 | 108 | eleq2d 2819 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π β π) β (Baseβ(Scalarβπ)) β (π β π) β (Baseβπ))) |
110 | 109 | ad2antrr 724 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π β π) β (Baseβ(Scalarβπ)) β (π β π) β (Baseβπ))) |
111 | 70, 110 | mpbird 256 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβ(Scalarβπ))) |
112 | 55, 78, 81, 79 | lmodvscl 20481 |
. . . 4
β’ ((π β LMod β§ (π β π) β (Baseβ(Scalarβπ)) β§ (πβ(πβπ)) β (Baseβπ)) β ((π β π) Β· (πβ(πβπ))) β (Baseβπ)) |
113 | 105, 111,
54, 112 | syl3anc 1371 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π β π) Β· (πβ(πβπ))) β (Baseβπ)) |
114 | | simpl1 1191 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β Fin) |
115 | 14 | adantr 481 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π
β Ring) |
116 | | simprl 769 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β β0) |
117 | | eqid 2732 |
. . . . 5
β’ (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) = (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) |
118 | | fzfid 13934 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β (0...π ) β Fin) |
119 | | ovexd 7440 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β§ π β (0...π )) β ((π β π) Β· (πβ(πβπ))) β V) |
120 | | fvexd 6903 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β
(0gβπ)
β V) |
121 | 117, 118,
119, 120 | fsuppmptdm 9370 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) finSupp (0gβπ)) |
122 | 114, 115,
116, 48, 121 | syl31anc 1373 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) finSupp (0gβπ)) |
123 | 55, 88, 56, 89, 90, 104, 113, 122 | gsummulc2 20122 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π Ξ£g (π β (0...π ) β¦ ((π Β· 1 ) Γ ((π β π) Β· (πβ(πβπ)))))) = ((π Β· 1 ) Γ (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ))))))) |
124 | 87, 123 | eqtr2d 2773 |
1
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β ((π Β· 1 ) Γ (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))))) = (π Ξ£g (π β (0...π ) β¦ (((π + 1) β π) Β· (πβ(πβπ)))))) |