![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptfidmsub | Structured version Visualization version GIF version |
Description: The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.) |
Ref | Expression |
---|---|
gsummptfidmsub.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfidmsub.s | ⊢ − = (-g‘𝐺) |
gsummptfidmsub.g | ⊢ (𝜑 → 𝐺 ∈ Abel) |
gsummptfidmsub.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptfidmsub.c | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) |
gsummptfidmsub.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) |
gsummptfidmsub.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) |
gsummptfidmsub.h | ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷) |
Ref | Expression |
---|---|
gsummptfidmsub | ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfidmsub.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2725 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsummptfidmsub.s | . 2 ⊢ − = (-g‘𝐺) | |
4 | gsummptfidmsub.g | . 2 ⊢ (𝜑 → 𝐺 ∈ Abel) | |
5 | gsummptfidmsub.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | gsummptfidmsub.c | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ 𝐵) | |
7 | gsummptfidmsub.d | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐷 ∈ 𝐵) | |
8 | gsummptfidmsub.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) | |
9 | 8 | a1i 11 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶)) |
10 | gsummptfidmsub.h | . . 3 ⊢ 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷) | |
11 | 10 | a1i 11 | . 2 ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐴 ↦ 𝐷)) |
12 | fvexd 6905 | . . 3 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
13 | 8, 5, 6, 12 | fsuppmptdm 9394 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
14 | 10, 5, 7, 12 | fsuppmptdm 9394 | . 2 ⊢ (𝜑 → 𝐻 finSupp (0g‘𝐺)) |
15 | 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14 | gsummptfssub 19903 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑥 ∈ 𝐴 ↦ (𝐶 − 𝐷))) = ((𝐺 Σg 𝐹) − (𝐺 Σg 𝐻))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ↦ cmpt 5227 ‘cfv 6543 (class class class)co 7413 Fincfn 8957 Basecbs 17174 0gc0g 17415 Σg cgsu 17416 -gcsg 18891 Abelcabl 19735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 df-om 7866 df-1st 7987 df-2nd 7988 df-supp 8159 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9381 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-0g 17417 df-gsum 17418 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-mhm 18734 df-submnd 18735 df-grp 18892 df-minusg 18893 df-sbg 18894 df-ghm 19167 df-cntz 19267 df-cmn 19736 df-abl 19737 |
This theorem is referenced by: cpmadugsumlemF 22791 |
Copyright terms: Public domain | W3C validator |