MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmsub Structured version   Visualization version   GIF version

Theorem gsummptfidmsub 19818
Description: The difference of two group sums expressed as mappings with finite domain. (Contributed by AV, 7-Nov-2019.)
Hypotheses
Ref Expression
gsummptfidmsub.b 𝐵 = (Base‘𝐺)
gsummptfidmsub.s = (-g𝐺)
gsummptfidmsub.g (𝜑𝐺 ∈ Abel)
gsummptfidmsub.a (𝜑𝐴 ∈ Fin)
gsummptfidmsub.c ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptfidmsub.d ((𝜑𝑥𝐴) → 𝐷𝐵)
gsummptfidmsub.f 𝐹 = (𝑥𝐴𝐶)
gsummptfidmsub.h 𝐻 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummptfidmsub (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 𝐷))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥,
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem gsummptfidmsub
StepHypRef Expression
1 gsummptfidmsub.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2733 . 2 (0g𝐺) = (0g𝐺)
3 gsummptfidmsub.s . 2 = (-g𝐺)
4 gsummptfidmsub.g . 2 (𝜑𝐺 ∈ Abel)
5 gsummptfidmsub.a . 2 (𝜑𝐴 ∈ Fin)
6 gsummptfidmsub.c . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummptfidmsub.d . 2 ((𝜑𝑥𝐴) → 𝐷𝐵)
8 gsummptfidmsub.f . . 3 𝐹 = (𝑥𝐴𝐶)
98a1i 11 . 2 (𝜑𝐹 = (𝑥𝐴𝐶))
10 gsummptfidmsub.h . . 3 𝐻 = (𝑥𝐴𝐷)
1110a1i 11 . 2 (𝜑𝐻 = (𝑥𝐴𝐷))
12 fvexd 6907 . . 3 (𝜑 → (0g𝐺) ∈ V)
138, 5, 6, 12fsuppmptdm 9374 . 2 (𝜑𝐹 finSupp (0g𝐺))
1410, 5, 7, 12fsuppmptdm 9374 . 2 (𝜑𝐻 finSupp (0g𝐺))
151, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14gsummptfssub 19817 1 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 𝐷))) = ((𝐺 Σg 𝐹) (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  cmpt 5232  cfv 6544  (class class class)co 7409  Fincfn 8939  Basecbs 17144  0gc0g 17385   Σg cgsu 17386  -gcsg 18821  Abelcabl 19649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-0g 17387  df-gsum 17388  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-ghm 19090  df-cntz 19181  df-cmn 19650  df-abl 19651
This theorem is referenced by:  cpmadugsumlemF  22378
  Copyright terms: Public domain W3C validator