Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsummptfidmsplitres | Structured version Visualization version GIF version |
Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
gsummptfidmsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptfidmsplit.p | ⊢ + = (+g‘𝐺) |
gsummptfidmsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptfidmsplit.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsummptfidmsplit.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
gsummptfidmsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
gsummptfidmsplit.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
gsummptfidmsplitres.f | ⊢ 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑌) |
Ref | Expression |
---|---|
gsummptfidmsplitres | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptfidmsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2737 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsummptfidmsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | gsummptfidmsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
5 | gsummptfidmsplit.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
6 | gsummptfidmsplit.y | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
7 | gsummptfidmsplitres.f | . . 3 ⊢ 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑌) | |
8 | 6, 7 | fmptd 6936 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
9 | fvexd 6737 | . . 3 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
10 | 7, 5, 6, 9 | fsuppmptdm 9001 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
11 | gsummptfidmsplit.i | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
12 | gsummptfidmsplit.u | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
13 | 1, 2, 3, 4, 5, 8, 10, 11, 12 | gsumsplit 19318 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 Vcvv 3413 ∪ cun 3869 ∩ cin 3870 ∅c0 4242 ↦ cmpt 5140 ↾ cres 5558 ‘cfv 6385 (class class class)co 7218 Fincfn 8631 Basecbs 16765 +gcplusg 16807 0gc0g 16949 Σg cgsu 16950 CMndccmn 19175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5184 ax-sep 5197 ax-nul 5204 ax-pow 5263 ax-pr 5327 ax-un 7528 ax-cnex 10790 ax-resscn 10791 ax-1cn 10792 ax-icn 10793 ax-addcl 10794 ax-addrcl 10795 ax-mulcl 10796 ax-mulrcl 10797 ax-mulcom 10798 ax-addass 10799 ax-mulass 10800 ax-distr 10801 ax-i2m1 10802 ax-1ne0 10803 ax-1rid 10804 ax-rnegex 10805 ax-rrecex 10806 ax-cnre 10807 ax-pre-lttri 10808 ax-pre-lttrn 10809 ax-pre-ltadd 10810 ax-pre-mulgt0 10811 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3415 df-sbc 3700 df-csb 3817 df-dif 3874 df-un 3876 df-in 3878 df-ss 3888 df-pss 3890 df-nul 4243 df-if 4445 df-pw 4520 df-sn 4547 df-pr 4549 df-tp 4551 df-op 4553 df-uni 4825 df-int 4865 df-iun 4911 df-iin 4912 df-br 5059 df-opab 5121 df-mpt 5141 df-tr 5167 df-id 5460 df-eprel 5465 df-po 5473 df-so 5474 df-fr 5514 df-se 5515 df-we 5516 df-xp 5562 df-rel 5563 df-cnv 5564 df-co 5565 df-dm 5566 df-rn 5567 df-res 5568 df-ima 5569 df-pred 6165 df-ord 6221 df-on 6222 df-lim 6223 df-suc 6224 df-iota 6343 df-fun 6387 df-fn 6388 df-f 6389 df-f1 6390 df-fo 6391 df-f1o 6392 df-fv 6393 df-isom 6394 df-riota 7175 df-ov 7221 df-oprab 7222 df-mpo 7223 df-of 7474 df-om 7650 df-1st 7766 df-2nd 7767 df-supp 7909 df-wrecs 8052 df-recs 8113 df-rdg 8151 df-1o 8207 df-er 8396 df-en 8632 df-dom 8633 df-sdom 8634 df-fin 8635 df-fsupp 8991 df-oi 9131 df-card 9560 df-pnf 10874 df-mnf 10875 df-xr 10876 df-ltxr 10877 df-le 10878 df-sub 11069 df-neg 11070 df-nn 11836 df-2 11898 df-n0 12096 df-z 12182 df-uz 12444 df-fz 13101 df-fzo 13244 df-seq 13580 df-hash 13902 df-sets 16722 df-slot 16740 df-ndx 16750 df-base 16766 df-ress 16790 df-plusg 16820 df-0g 16951 df-gsum 16952 df-mre 17094 df-mrc 17095 df-acs 17097 df-mgm 18119 df-sgrp 18168 df-mnd 18179 df-submnd 18224 df-cntz 18716 df-cmn 19177 |
This theorem is referenced by: gsumpr 19345 mdetralt 21510 |
Copyright terms: Public domain | W3C validator |