MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmsplitres Structured version   Visualization version   GIF version

Theorem gsummptfidmsplitres 19030
Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmsplit.b 𝐵 = (Base‘𝐺)
gsummptfidmsplit.p + = (+g𝐺)
gsummptfidmsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfidmsplit.a (𝜑𝐴 ∈ Fin)
gsummptfidmsplit.y ((𝜑𝑘𝐴) → 𝑌𝐵)
gsummptfidmsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsummptfidmsplit.u (𝜑𝐴 = (𝐶𝐷))
gsummptfidmsplitres.f 𝐹 = (𝑘𝐴𝑌)
Assertion
Ref Expression
gsummptfidmsplitres (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfidmsplitres
StepHypRef Expression
1 gsummptfidmsplit.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2820 . 2 (0g𝐺) = (0g𝐺)
3 gsummptfidmsplit.p . 2 + = (+g𝐺)
4 gsummptfidmsplit.g . 2 (𝜑𝐺 ∈ CMnd)
5 gsummptfidmsplit.a . 2 (𝜑𝐴 ∈ Fin)
6 gsummptfidmsplit.y . . 3 ((𝜑𝑘𝐴) → 𝑌𝐵)
7 gsummptfidmsplitres.f . . 3 𝐹 = (𝑘𝐴𝑌)
86, 7fmptd 6854 . 2 (𝜑𝐹:𝐴𝐵)
9 fvexd 6661 . . 3 (𝜑 → (0g𝐺) ∈ V)
107, 5, 6, 9fsuppmptdm 8822 . 2 (𝜑𝐹 finSupp (0g𝐺))
11 gsummptfidmsplit.i . 2 (𝜑 → (𝐶𝐷) = ∅)
12 gsummptfidmsplit.u . 2 (𝜑𝐴 = (𝐶𝐷))
131, 2, 3, 4, 5, 8, 10, 11, 12gsumsplit 19027 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  Vcvv 3473  cun 3911  cin 3912  c0 4269  cmpt 5122  cres 5533  cfv 6331  (class class class)co 7133  Fincfn 8487  Basecbs 16462  +gcplusg 16544  0gc0g 16692   Σg cgsu 16693  CMndccmn 18885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-tp 4548  df-op 4550  df-uni 4815  df-int 4853  df-iun 4897  df-iin 4898  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5436  df-eprel 5441  df-po 5450  df-so 5451  df-fr 5490  df-se 5491  df-we 5492  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-isom 6340  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-of 7387  df-om 7559  df-1st 7667  df-2nd 7668  df-supp 7809  df-wrecs 7925  df-recs 7986  df-rdg 8024  df-1o 8080  df-oadd 8084  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-fin 8491  df-fsupp 8812  df-oi 8952  df-card 9346  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-nn 11617  df-2 11679  df-n0 11877  df-z 11961  df-uz 12223  df-fz 12877  df-fzo 13018  df-seq 13354  df-hash 13676  df-ndx 16465  df-slot 16466  df-base 16468  df-sets 16469  df-ress 16470  df-plusg 16557  df-0g 16694  df-gsum 16695  df-mre 16836  df-mrc 16837  df-acs 16839  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-submnd 17936  df-cntz 18426  df-cmn 18887
This theorem is referenced by:  gsumpr  19054  mdetralt  21193
  Copyright terms: Public domain W3C validator