MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmsplitres Structured version   Visualization version   GIF version

Theorem gsummptfidmsplitres 19973
Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmsplit.b 𝐵 = (Base‘𝐺)
gsummptfidmsplit.p + = (+g𝐺)
gsummptfidmsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfidmsplit.a (𝜑𝐴 ∈ Fin)
gsummptfidmsplit.y ((𝜑𝑘𝐴) → 𝑌𝐵)
gsummptfidmsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsummptfidmsplit.u (𝜑𝐴 = (𝐶𝐷))
gsummptfidmsplitres.f 𝐹 = (𝑘𝐴𝑌)
Assertion
Ref Expression
gsummptfidmsplitres (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfidmsplitres
StepHypRef Expression
1 gsummptfidmsplit.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2740 . 2 (0g𝐺) = (0g𝐺)
3 gsummptfidmsplit.p . 2 + = (+g𝐺)
4 gsummptfidmsplit.g . 2 (𝜑𝐺 ∈ CMnd)
5 gsummptfidmsplit.a . 2 (𝜑𝐴 ∈ Fin)
6 gsummptfidmsplit.y . . 3 ((𝜑𝑘𝐴) → 𝑌𝐵)
7 gsummptfidmsplitres.f . . 3 𝐹 = (𝑘𝐴𝑌)
86, 7fmptd 7148 . 2 (𝜑𝐹:𝐴𝐵)
9 fvexd 6935 . . 3 (𝜑 → (0g𝐺) ∈ V)
107, 5, 6, 9fsuppmptdm 9445 . 2 (𝜑𝐹 finSupp (0g𝐺))
11 gsummptfidmsplit.i . 2 (𝜑 → (𝐶𝐷) = ∅)
12 gsummptfidmsplit.u . 2 (𝜑𝐴 = (𝐶𝐷))
131, 2, 3, 4, 5, 8, 10, 11, 12gsumsplit 19970 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐶)) + (𝐺 Σg (𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  c0 4352  cmpt 5249  cres 5702  cfv 6573  (class class class)co 7448  Fincfn 9003  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500  CMndccmn 19822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-cntz 19357  df-cmn 19824
This theorem is referenced by:  gsumpr  19997  mdetralt  22635
  Copyright terms: Public domain W3C validator