| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptfidmsplitres | Structured version Visualization version GIF version | ||
| Description: Split a group sum expressed as mapping with a finite domain into two parts using restrictions. (Contributed by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| gsummptfidmsplit.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptfidmsplit.p | ⊢ + = (+g‘𝐺) |
| gsummptfidmsplit.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptfidmsplit.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsummptfidmsplit.y | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) |
| gsummptfidmsplit.i | ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) |
| gsummptfidmsplit.u | ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) |
| gsummptfidmsplitres.f | ⊢ 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑌) |
| Ref | Expression |
|---|---|
| gsummptfidmsplitres | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptfidmsplit.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2733 | . 2 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsummptfidmsplit.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsummptfidmsplit.g | . 2 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 5 | gsummptfidmsplit.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 6 | gsummptfidmsplit.y | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑌 ∈ 𝐵) | |
| 7 | gsummptfidmsplitres.f | . . 3 ⊢ 𝐹 = (𝑘 ∈ 𝐴 ↦ 𝑌) | |
| 8 | 6, 7 | fmptd 7053 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 9 | fvexd 6843 | . . 3 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
| 10 | 7, 5, 6, 9 | fsuppmptdm 9267 | . 2 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
| 11 | gsummptfidmsplit.i | . 2 ⊢ (𝜑 → (𝐶 ∩ 𝐷) = ∅) | |
| 12 | gsummptfidmsplit.u | . 2 ⊢ (𝜑 → 𝐴 = (𝐶 ∪ 𝐷)) | |
| 13 | 1, 2, 3, 4, 5, 8, 10, 11, 12 | gsumsplit 19842 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐶)) + (𝐺 Σg (𝐹 ↾ 𝐷)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 ↦ cmpt 5174 ↾ cres 5621 ‘cfv 6486 (class class class)co 7352 Fincfn 8875 Basecbs 17122 +gcplusg 17163 0gc0g 17345 Σg cgsu 17346 CMndccmn 19694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-seq 13911 df-hash 14240 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-0g 17347 df-gsum 17348 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-cntz 19231 df-cmn 19696 |
| This theorem is referenced by: gsumpr 19869 mdetralt 22524 |
| Copyright terms: Public domain | W3C validator |