MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem3 Structured version   Visualization version   GIF version

Theorem smadiadetlem3 22655
Description: Lemma 3 for smadiadet 22657. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
smadiadetlem.p 𝑃 = (Base‘(SymGrp‘𝑁))
smadiadetlem.g 𝐺 = (mulGrp‘𝑅)
madetminlem.y 𝑌 = (ℤRHom‘𝑅)
madetminlem.s 𝑆 = (pmSgn‘𝑁)
madetminlem.t · = (.r𝑅)
smadiadetlem.w 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
smadiadetlem.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
smadiadetlem3 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
Distinct variable groups:   𝑖,𝑗,𝑛,𝐵   𝑖,𝑞,𝐾,𝑗,𝑛   𝑖,𝑀,𝑗,𝑛   𝑖,𝑁,𝑗,𝑛   𝑃,𝑖,𝑗,𝑛,𝑞   𝑅,𝑖,𝑗,𝑛   1 ,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛   𝑛,𝐺,𝑝   𝐵,𝑝   𝐾,𝑝   𝑀,𝑝   𝑁,𝑝   𝑃,𝑝   𝑅,𝑝,𝑖,𝑗   𝑞,𝑝   𝑛,𝑊,𝑝   𝐺,𝑝   𝑌,𝑝   𝑍,𝑝
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑛,𝑞,𝑝)   𝐵(𝑞)   𝑅(𝑞)   𝑆(𝑖,𝑗,𝑛,𝑞,𝑝)   · (𝑖,𝑗,𝑛,𝑞,𝑝)   1 (𝑞,𝑝)   𝐺(𝑖,𝑗,𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑊(𝑖,𝑗,𝑞)   𝑌(𝑖,𝑗,𝑛,𝑞)   0 (𝑞,𝑝)   𝑍(𝑖,𝑗,𝑛,𝑞)

Proof of Theorem smadiadetlem3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2726 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 marep01ma.0 . . 3 0 = (0g𝑅)
3 eqid 2726 . . 3 (Cntz‘𝑅) = (Cntz‘𝑅)
4 marep01ma.r . . . . 5 𝑅 ∈ CRing
5 crngring 20221 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6 ringmnd 20219 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
74, 5, 6mp2b 10 . . . 4 𝑅 ∈ Mnd
87a1i 11 . . 3 ((𝑀𝐵𝐾𝑁) → 𝑅 ∈ Mnd)
9 smadiadetlem.w . . . 4 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
10 fvexd 6905 . . . 4 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ V)
119, 10eqeltrid 2830 . . 3 ((𝑀𝐵𝐾𝑁) → 𝑊 ∈ V)
12 marep01ma.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
13 marep01ma.b . . . 4 𝐵 = (Base‘𝐴)
14 marep01ma.1 . . . 4 1 = (1r𝑅)
15 smadiadetlem.p . . . 4 𝑃 = (Base‘(SymGrp‘𝑁))
16 smadiadetlem.g . . . 4 𝐺 = (mulGrp‘𝑅)
17 madetminlem.y . . . 4 𝑌 = (ℤRHom‘𝑅)
18 madetminlem.s . . . 4 𝑆 = (pmSgn‘𝑁)
19 madetminlem.t . . . 4 · = (.r𝑅)
20 smadiadetlem.z . . . 4 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
2112, 13, 4, 2, 14, 15, 16, 17, 18, 19, 9, 20smadiadetlem3lem1 22653 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))):𝑊⟶(Base‘𝑅))
2212, 13, 4, 2, 14, 15, 16, 17, 18, 19, 9, 20smadiadetlem3lem2 22654 . . 3 ((𝑀𝐵𝐾𝑁) → ran (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ⊆ ((Cntz‘𝑅)‘ran (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
23 eqid 2726 . . . 4 (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) = (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))
2412, 13matrcl 22397 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
2524simpld 493 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
2625adantr 479 . . . . . 6 ((𝑀𝐵𝐾𝑁) → 𝑁 ∈ Fin)
27 diffi 9203 . . . . . 6 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
28 eqid 2726 . . . . . . 7 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
29 eqid 2726 . . . . . . 7 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
3028, 29symgbasfi 19369 . . . . . 6 ((𝑁 ∖ {𝐾}) ∈ Fin → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
3126, 27, 303syl 18 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
329, 31eqeltrid 2830 . . . 4 ((𝑀𝐵𝐾𝑁) → 𝑊 ∈ Fin)
33 ovexd 7448 . . . 4 (((𝑀𝐵𝐾𝑁) ∧ 𝑝𝑊) → (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ V)
342fvexi 6904 . . . . 5 0 ∈ V
3534a1i 11 . . . 4 ((𝑀𝐵𝐾𝑁) → 0 ∈ V)
3623, 32, 33, 35fsuppmptdm 9409 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) finSupp 0 )
37 fveq1 6889 . . . . . . 7 (𝑞 = 𝑝 → (𝑞𝐾) = (𝑝𝐾))
3837eqeq1d 2728 . . . . . 6 (𝑞 = 𝑝 → ((𝑞𝐾) = 𝐾 ↔ (𝑝𝐾) = 𝐾))
3938cbvrabv 3430 . . . . 5 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑝𝑃 ∣ (𝑝𝐾) = 𝐾}
40 eqid 2726 . . . . 5 (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))
4115, 39, 9, 40symgfixf1o 19431 . . . 4 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))):{𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}–1-1-onto𝑊)
4225, 41sylan 578 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))):{𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}–1-1-onto𝑊)
431, 2, 3, 8, 11, 21, 22, 36, 42gsumzf1o 19903 . 2 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) = (𝑅 Σg ((𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ∘ (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))))))
44 eqid 2726 . . . . . . 7 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
45 eqid 2726 . . . . . . 7 (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾})
4615, 44, 9, 45symgfixelsi 19426 . . . . . 6 ((𝐾𝑁𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑝 ↾ (𝑁 ∖ {𝐾})) ∈ 𝑊)
4746adantll 712 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝑝 ↾ (𝑁 ∖ {𝐾})) ∈ 𝑊)
48 eqidd 2727 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))))
49 fveq2 6890 . . . . . . . 8 (𝑝 = 𝑦 → ((𝑌𝑍)‘𝑝) = ((𝑌𝑍)‘𝑦))
50 fveq1 6889 . . . . . . . . . . 11 (𝑝 = 𝑦 → (𝑝𝑛) = (𝑦𝑛))
5150oveq2d 7429 . . . . . . . . . 10 (𝑝 = 𝑦 → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛)))
5251mpteq2dv 5245 . . . . . . . . 9 (𝑝 = 𝑦 → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛))))
5352oveq2d 7429 . . . . . . . 8 (𝑝 = 𝑦 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛)))))
5449, 53oveq12d 7431 . . . . . . 7 (𝑝 = 𝑦 → (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) = (((𝑌𝑍)‘𝑦)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛))))))
5554cbvmptv 5256 . . . . . 6 (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) = (𝑦𝑊 ↦ (((𝑌𝑍)‘𝑦)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛))))))
5655a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) = (𝑦𝑊 ↦ (((𝑌𝑍)‘𝑦)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛)))))))
57 fveq2 6890 . . . . . 6 (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → ((𝑌𝑍)‘𝑦) = ((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))))
58 fveq1 6889 . . . . . . . . . 10 (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝑦𝑛) = ((𝑝 ↾ (𝑁 ∖ {𝐾}))‘𝑛))
59 fvres 6909 . . . . . . . . . 10 (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑝 ↾ (𝑁 ∖ {𝐾}))‘𝑛) = (𝑝𝑛))
6058, 59sylan9eq 2786 . . . . . . . . 9 ((𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑦𝑛) = (𝑝𝑛))
6160oveq2d 7429 . . . . . . . 8 ((𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))
6261mpteq2dva 5243 . . . . . . 7 (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))
6362oveq2d 7429 . . . . . 6 (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))
6457, 63oveq12d 7431 . . . . 5 (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (((𝑌𝑍)‘𝑦)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦𝑛))))) = (((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))
6547, 48, 56, 64fmptco 7132 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ∘ (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))
6615, 18, 20copsgndif 21592 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑝)))
6725, 66sylan 578 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} → ((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑝)))
6867imp 405 . . . . . 6 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌𝑆)‘𝑝))
6968oveq1d 7428 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) = (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))
7069mpteq2dva 5243 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))
7165, 70eqtrd 2766 . . 3 ((𝑀𝐵𝐾𝑁) → ((𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ∘ (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))
7271oveq2d 7429 . 2 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg ((𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))) ∘ (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))))) = (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7343, 72eqtr2d 2767 1 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {crab 3419  Vcvv 3462  cdif 3943  {csn 4623  cmpt 5226  cres 5674  ccom 5676  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7413  cmpo 7415  Fincfn 8963  Basecbs 17205  .rcmulr 17259  0gc0g 17446   Σg cgsu 17447  Mndcmnd 18719  Cntzccntz 19302  SymGrpcsymg 19357  pmSgncpsgn 19480  mulGrpcmgp 20110  1rcur 20157  Ringcrg 20209  CRingccrg 20210  ℤRHomczrh 21482   Mat cmat 22392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-addf 11225  ax-mulf 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-xor 1506  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-ot 4632  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-supp 8164  df-tpos 8230  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8846  df-pm 8847  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-fsupp 9396  df-sup 9475  df-oi 9543  df-card 9972  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-xnn0 12588  df-z 12602  df-dec 12721  df-uz 12866  df-rp 13020  df-fz 13530  df-fzo 13673  df-seq 14013  df-exp 14073  df-hash 14340  df-word 14515  df-lsw 14563  df-concat 14571  df-s1 14596  df-substr 14641  df-pfx 14671  df-splice 14750  df-reverse 14759  df-s2 14849  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-starv 17273  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-unif 17281  df-hom 17282  df-cco 17283  df-0g 17448  df-gsum 17449  df-prds 17454  df-pws 17456  df-mre 17591  df-mrc 17592  df-acs 17594  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-mhm 18765  df-submnd 18766  df-efmnd 18851  df-grp 18923  df-minusg 18924  df-mulg 19055  df-subg 19110  df-ghm 19200  df-gim 19246  df-cntz 19304  df-oppg 19333  df-symg 19358  df-pmtr 19433  df-psgn 19482  df-cmn 19773  df-abl 19774  df-mgp 20111  df-rng 20129  df-ur 20158  df-ring 20211  df-cring 20212  df-rhm 20447  df-subrng 20521  df-subrg 20546  df-sra 21144  df-rgmod 21145  df-cnfld 21337  df-zring 21430  df-zrh 21486  df-dsmm 21723  df-frlm 21738  df-mat 22393
This theorem is referenced by:  smadiadetlem4  22656
  Copyright terms: Public domain W3C validator