| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . 3
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 2 | | marep01ma.0 |
. . 3
⊢ 0 =
(0g‘𝑅) |
| 3 | | eqid 2737 |
. . 3
⊢
(Cntz‘𝑅) =
(Cntz‘𝑅) |
| 4 | | marep01ma.r |
. . . . 5
⊢ 𝑅 ∈ CRing |
| 5 | | crngring 20242 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 6 | | ringmnd 20240 |
. . . . 5
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
| 7 | 4, 5, 6 | mp2b 10 |
. . . 4
⊢ 𝑅 ∈ Mnd |
| 8 | 7 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑅 ∈ Mnd) |
| 9 | | smadiadetlem.w |
. . . 4
⊢ 𝑊 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 10 | | fvexd 6921 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ V) |
| 11 | 9, 10 | eqeltrid 2845 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑊 ∈ V) |
| 12 | | marep01ma.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 13 | | marep01ma.b |
. . . 4
⊢ 𝐵 = (Base‘𝐴) |
| 14 | | marep01ma.1 |
. . . 4
⊢ 1 =
(1r‘𝑅) |
| 15 | | smadiadetlem.p |
. . . 4
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
| 16 | | smadiadetlem.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑅) |
| 17 | | madetminlem.y |
. . . 4
⊢ 𝑌 = (ℤRHom‘𝑅) |
| 18 | | madetminlem.s |
. . . 4
⊢ 𝑆 = (pmSgn‘𝑁) |
| 19 | | madetminlem.t |
. . . 4
⊢ · =
(.r‘𝑅) |
| 20 | | smadiadetlem.z |
. . . 4
⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
| 21 | 12, 13, 4, 2, 14, 15, 16, 17, 18, 19, 9, 20 | smadiadetlem3lem1 22672 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))):𝑊⟶(Base‘𝑅)) |
| 22 | 12, 13, 4, 2, 14, 15, 16, 17, 18, 19, 9, 20 | smadiadetlem3lem2 22673 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ⊆ ((Cntz‘𝑅)‘ran (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
| 23 | | eqid 2737 |
. . . 4
⊢ (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) = (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) |
| 24 | 12, 13 | matrcl 22416 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 25 | 24 | simpld 494 |
. . . . . . 7
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 26 | 25 | adantr 480 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 27 | | diffi 9215 |
. . . . . 6
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
| 28 | | eqid 2737 |
. . . . . . 7
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
| 29 | | eqid 2737 |
. . . . . . 7
⊢
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
| 30 | 28, 29 | symgbasfi 19396 |
. . . . . 6
⊢ ((𝑁 ∖ {𝐾}) ∈ Fin →
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin) |
| 31 | 26, 27, 30 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin) |
| 32 | 9, 31 | eqeltrid 2845 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑊 ∈ Fin) |
| 33 | | ovexd 7466 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ 𝑊) → (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) ∈ V) |
| 34 | 2 | fvexi 6920 |
. . . . 5
⊢ 0 ∈
V |
| 35 | 34 | a1i 11 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 0 ∈ V) |
| 36 | 23, 32, 33, 35 | fsuppmptdm 9416 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) finSupp 0 ) |
| 37 | | fveq1 6905 |
. . . . . . 7
⊢ (𝑞 = 𝑝 → (𝑞‘𝐾) = (𝑝‘𝐾)) |
| 38 | 37 | eqeq1d 2739 |
. . . . . 6
⊢ (𝑞 = 𝑝 → ((𝑞‘𝐾) = 𝐾 ↔ (𝑝‘𝐾) = 𝐾)) |
| 39 | 38 | cbvrabv 3447 |
. . . . 5
⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑝 ∈ 𝑃 ∣ (𝑝‘𝐾) = 𝐾} |
| 40 | | eqid 2737 |
. . . . 5
⊢ (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))) |
| 41 | 15, 39, 9, 40 | symgfixf1o 19458 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))):{𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}–1-1-onto→𝑊) |
| 42 | 25, 41 | sylan 580 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))):{𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}–1-1-onto→𝑊) |
| 43 | 1, 2, 3, 8, 11, 21, 22, 36, 42 | gsumzf1o 19930 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) = (𝑅 Σg ((𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ∘ (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))))) |
| 44 | | eqid 2737 |
. . . . . . 7
⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
| 45 | | eqid 2737 |
. . . . . . 7
⊢ (𝑁 ∖ {𝐾}) = (𝑁 ∖ {𝐾}) |
| 46 | 15, 44, 9, 45 | symgfixelsi 19453 |
. . . . . 6
⊢ ((𝐾 ∈ 𝑁 ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑝 ↾ (𝑁 ∖ {𝐾})) ∈ 𝑊) |
| 47 | 46 | adantll 714 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝑝 ↾ (𝑁 ∖ {𝐾})) ∈ 𝑊) |
| 48 | | eqidd 2738 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))) |
| 49 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑝 = 𝑦 → ((𝑌 ∘ 𝑍)‘𝑝) = ((𝑌 ∘ 𝑍)‘𝑦)) |
| 50 | | fveq1 6905 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑦 → (𝑝‘𝑛) = (𝑦‘𝑛)) |
| 51 | 50 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑦 → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛))) |
| 52 | 51 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ (𝑝 = 𝑦 → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛)))) |
| 53 | 52 | oveq2d 7447 |
. . . . . . . 8
⊢ (𝑝 = 𝑦 → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛))))) |
| 54 | 49, 53 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑝 = 𝑦 → (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑍)‘𝑦)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛)))))) |
| 55 | 54 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) = (𝑦 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑦)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛)))))) |
| 56 | 55 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) = (𝑦 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑦)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛))))))) |
| 57 | | fveq2 6906 |
. . . . . 6
⊢ (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → ((𝑌 ∘ 𝑍)‘𝑦) = ((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))) |
| 58 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝑦‘𝑛) = ((𝑝 ↾ (𝑁 ∖ {𝐾}))‘𝑛)) |
| 59 | | fvres 6925 |
. . . . . . . . . 10
⊢ (𝑛 ∈ (𝑁 ∖ {𝐾}) → ((𝑝 ↾ (𝑁 ∖ {𝐾}))‘𝑛) = (𝑝‘𝑛)) |
| 60 | 58, 59 | sylan9eq 2797 |
. . . . . . . . 9
⊢ ((𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑦‘𝑛) = (𝑝‘𝑛)) |
| 61 | 60 | oveq2d 7447 |
. . . . . . . 8
⊢ ((𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) ∧ 𝑛 ∈ (𝑁 ∖ {𝐾})) → (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛)) = (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))) |
| 62 | 61 | mpteq2dva 5242 |
. . . . . . 7
⊢ (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛))) = (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))) |
| 63 | 62 | oveq2d 7447 |
. . . . . 6
⊢ (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) |
| 64 | 57, 63 | oveq12d 7449 |
. . . . 5
⊢ (𝑦 = (𝑝 ↾ (𝑁 ∖ {𝐾})) → (((𝑌 ∘ 𝑍)‘𝑦)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑦‘𝑛))))) = (((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) |
| 65 | 47, 48, 56, 64 | fmptco 7149 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ((𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ∘ (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) |
| 66 | 15, 18, 20 | copsgndif 21621 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑝))) |
| 67 | 25, 66 | sylan 580 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} → ((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑝))) |
| 68 | 67 | imp 406 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾}))) = ((𝑌 ∘ 𝑆)‘𝑝)) |
| 69 | 68 | oveq1d 7446 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) |
| 70 | 69 | mpteq2dva 5242 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑍)‘(𝑝 ↾ (𝑁 ∖ {𝐾})))(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) |
| 71 | 65, 70 | eqtrd 2777 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ((𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ∘ (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾})))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) |
| 72 | 71 | oveq2d 7447 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg ((𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) ∘ (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (𝑝 ↾ (𝑁 ∖ {𝐾}))))) = (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
| 73 | 43, 72 | eqtr2d 2778 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |