| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumzunsnd | Structured version Visualization version GIF version | ||
| Description: Append an element to a finite group sum, more general version of gsumunsnd 19976. (Contributed by AV, 7-Oct-2019.) |
| Ref | Expression |
|---|---|
| gsumzunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumzunsnd.p | ⊢ + = (+g‘𝐺) |
| gsumzunsnd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| gsumzunsnd.f | ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) |
| gsumzunsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| gsumzunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| gsumzunsnd.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| gsumzunsnd.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
| gsumzunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| gsumzunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
| gsumzunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| gsumzunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
| Ref | Expression |
|---|---|
| gsumzunsnd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | eqid 2737 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 3 | gsumzunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | gsumzunsnd.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 5 | gsumzunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 6 | gsumzunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | snfi 9083 | . . . 4 ⊢ {𝑀} ∈ Fin | |
| 8 | unfi 9211 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
| 10 | elun 4153 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
| 11 | gsumzunsnd.x | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
| 12 | elsni 4643 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
| 13 | gsumzunsnd.s | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
| 14 | 12, 13 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
| 15 | gsumzunsnd.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
| 17 | 14, 16 | eqeltrd 2841 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
| 18 | 11, 17 | jaodan 960 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
| 19 | 10, 18 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
| 20 | gsumzunsnd.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) | |
| 21 | 19, 20 | fmptd 7134 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 ∪ {𝑀})⟶𝐵) |
| 22 | gsumzunsnd.c | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
| 23 | 11 | expcom 413 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝑋 ∈ 𝐵)) |
| 24 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑌 ∈ 𝐵) |
| 25 | 13, 24 | eqeltrd 2841 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 ∈ 𝐵) |
| 26 | 25 | expcom 413 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝜑 → 𝑋 ∈ 𝐵)) |
| 27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → (𝜑 → 𝑋 ∈ 𝐵)) |
| 28 | 23, 27 | jaoi 858 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
| 29 | 10, 28 | sylbi 217 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
| 30 | 29 | impcom 407 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
| 31 | fvexd 6921 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
| 32 | 20, 9, 30, 31 | fsuppmptdm 9416 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
| 33 | gsumzunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
| 34 | disjsn 4711 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
| 35 | 33, 34 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
| 36 | eqidd 2738 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
| 37 | 1, 2, 3, 4, 5, 9, 21, 22, 32, 35, 36 | gsumzsplit 19945 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀})))) |
| 38 | 20 | reseq1i 5993 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) |
| 39 | ssun1 4178 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝑀}) | |
| 40 | resmpt 6055 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
| 41 | 39, 40 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
| 42 | 38, 41 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
| 43 | 42 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) |
| 44 | 20 | reseq1i 5993 | . . . . 5 ⊢ (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) |
| 45 | ssun2 4179 | . . . . . 6 ⊢ {𝑀} ⊆ (𝐴 ∪ {𝑀}) | |
| 46 | resmpt 6055 | . . . . . 6 ⊢ ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) | |
| 47 | 45, 46 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
| 48 | 44, 47 | eqtrid 2789 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
| 49 | 48 | oveq2d 7447 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) |
| 50 | 43, 49 | oveq12d 7449 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
| 51 | gsumzunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 52 | 1, 5, 51, 15, 13 | gsumsnd 19970 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
| 53 | 52 | oveq2d 7447 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
| 54 | 37, 50, 53 | 3eqtrd 2781 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 848 = wceq 1540 ∈ wcel 2108 Vcvv 3480 ∪ cun 3949 ∩ cin 3950 ⊆ wss 3951 ∅c0 4333 {csn 4626 ↦ cmpt 5225 ran crn 5686 ↾ cres 5687 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 Basecbs 17247 +gcplusg 17297 0gc0g 17484 Σg cgsu 17485 Mndcmnd 18747 Cntzccntz 19333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-n0 12527 df-z 12614 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-0g 17486 df-gsum 17487 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 |
| This theorem is referenced by: mplcoe5 22058 gsumzresunsn 33059 |
| Copyright terms: Public domain | W3C validator |