Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumzunsnd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, more general version of gsumunsnd 19559. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
gsumzunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzunsnd.p | ⊢ + = (+g‘𝐺) |
gsumzunsnd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzunsnd.f | ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) |
gsumzunsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzunsnd.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzunsnd.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumzunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumzunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumzunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumzunsnd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumzunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumzunsnd.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | gsumzunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 8834 | . . . 4 ⊢ {𝑀} ∈ Fin | |
8 | unfi 8955 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
10 | elun 4083 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
11 | gsumzunsnd.x | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | elsni 4578 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
13 | gsumzunsnd.s | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
14 | 12, 13 | sylan2 593 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
15 | gsumzunsnd.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
17 | 14, 16 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
18 | 11, 17 | jaodan 955 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
19 | 10, 18 | sylan2b 594 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
20 | gsumzunsnd.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) | |
21 | 19, 20 | fmptd 6988 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 ∪ {𝑀})⟶𝐵) |
22 | gsumzunsnd.c | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
23 | 11 | expcom 414 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝑋 ∈ 𝐵)) |
24 | 15 | adantr 481 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑌 ∈ 𝐵) |
25 | 13, 24 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 ∈ 𝐵) |
26 | 25 | expcom 414 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝜑 → 𝑋 ∈ 𝐵)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → (𝜑 → 𝑋 ∈ 𝐵)) |
28 | 23, 27 | jaoi 854 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
29 | 10, 28 | sylbi 216 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
30 | 29 | impcom 408 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
31 | fvexd 6789 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
32 | 20, 9, 30, 31 | fsuppmptdm 9139 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
33 | gsumzunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
34 | disjsn 4647 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
35 | 33, 34 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
36 | eqidd 2739 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
37 | 1, 2, 3, 4, 5, 9, 21, 22, 32, 35, 36 | gsumzsplit 19528 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀})))) |
38 | 20 | reseq1i 5887 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) |
39 | ssun1 4106 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝑀}) | |
40 | resmpt 5945 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
41 | 39, 40 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
42 | 38, 41 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
43 | 42 | oveq2d 7291 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) |
44 | 20 | reseq1i 5887 | . . . . 5 ⊢ (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) |
45 | ssun2 4107 | . . . . . 6 ⊢ {𝑀} ⊆ (𝐴 ∪ {𝑀}) | |
46 | resmpt 5945 | . . . . . 6 ⊢ ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) | |
47 | 45, 46 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
48 | 44, 47 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
49 | 48 | oveq2d 7291 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) |
50 | 43, 49 | oveq12d 7293 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
51 | gsumzunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
52 | 1, 5, 51, 15, 13 | gsumsnd 19553 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
53 | 52 | oveq2d 7291 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
54 | 37, 50, 53 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ∩ cin 3886 ⊆ wss 3887 ∅c0 4256 {csn 4561 ↦ cmpt 5157 ran crn 5590 ↾ cres 5591 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 +gcplusg 16962 0gc0g 17150 Σg cgsu 17151 Mndcmnd 18385 Cntzccntz 18921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-submnd 18431 df-mulg 18701 df-cntz 18923 df-cmn 19388 |
This theorem is referenced by: mplcoe5 21241 gsumzresunsn 31314 |
Copyright terms: Public domain | W3C validator |