![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumzunsnd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, more general version of gsumunsnd 19925. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
gsumzunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzunsnd.p | ⊢ + = (+g‘𝐺) |
gsumzunsnd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzunsnd.f | ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) |
gsumzunsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzunsnd.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzunsnd.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumzunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumzunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumzunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumzunsnd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2725 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumzunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumzunsnd.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | gsumzunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 9069 | . . . 4 ⊢ {𝑀} ∈ Fin | |
8 | unfi 9197 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 584 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
10 | elun 4145 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
11 | gsumzunsnd.x | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | elsni 4647 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
13 | gsumzunsnd.s | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
14 | 12, 13 | sylan2 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
15 | gsumzunsnd.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | 15 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
17 | 14, 16 | eqeltrd 2825 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
18 | 11, 17 | jaodan 955 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
19 | 10, 18 | sylan2b 592 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
20 | gsumzunsnd.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) | |
21 | 19, 20 | fmptd 7123 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 ∪ {𝑀})⟶𝐵) |
22 | gsumzunsnd.c | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
23 | 11 | expcom 412 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝑋 ∈ 𝐵)) |
24 | 15 | adantr 479 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑌 ∈ 𝐵) |
25 | 13, 24 | eqeltrd 2825 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 ∈ 𝐵) |
26 | 25 | expcom 412 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝜑 → 𝑋 ∈ 𝐵)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → (𝜑 → 𝑋 ∈ 𝐵)) |
28 | 23, 27 | jaoi 855 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
29 | 10, 28 | sylbi 216 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
30 | 29 | impcom 406 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
31 | fvexd 6911 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
32 | 20, 9, 30, 31 | fsuppmptdm 9401 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
33 | gsumzunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
34 | disjsn 4717 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
35 | 33, 34 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
36 | eqidd 2726 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
37 | 1, 2, 3, 4, 5, 9, 21, 22, 32, 35, 36 | gsumzsplit 19894 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀})))) |
38 | 20 | reseq1i 5981 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) |
39 | ssun1 4170 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝑀}) | |
40 | resmpt 6042 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
41 | 39, 40 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
42 | 38, 41 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
43 | 42 | oveq2d 7435 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) |
44 | 20 | reseq1i 5981 | . . . . 5 ⊢ (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) |
45 | ssun2 4171 | . . . . . 6 ⊢ {𝑀} ⊆ (𝐴 ∪ {𝑀}) | |
46 | resmpt 6042 | . . . . . 6 ⊢ ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) | |
47 | 45, 46 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
48 | 44, 47 | eqtrid 2777 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
49 | 48 | oveq2d 7435 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) |
50 | 43, 49 | oveq12d 7437 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
51 | gsumzunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
52 | 1, 5, 51, 15, 13 | gsumsnd 19919 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
53 | 52 | oveq2d 7435 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
54 | 37, 50, 53 | 3eqtrd 2769 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ∪ cun 3942 ∩ cin 3943 ⊆ wss 3944 ∅c0 4322 {csn 4630 ↦ cmpt 5232 ran crn 5679 ↾ cres 5680 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 Basecbs 17183 +gcplusg 17236 0gc0g 17424 Σg cgsu 17425 Mndcmnd 18697 Cntzccntz 19278 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-0g 17426 df-gsum 17427 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-submnd 18744 df-mulg 19032 df-cntz 19280 df-cmn 19749 |
This theorem is referenced by: mplcoe5 22000 gsumzresunsn 32858 |
Copyright terms: Public domain | W3C validator |