Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumzunsnd | Structured version Visualization version GIF version |
Description: Append an element to a finite group sum, more general version of gsumunsnd 19474. (Contributed by AV, 7-Oct-2019.) |
Ref | Expression |
---|---|
gsumzunsnd.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzunsnd.p | ⊢ + = (+g‘𝐺) |
gsumzunsnd.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzunsnd.f | ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) |
gsumzunsnd.g | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
gsumzunsnd.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
gsumzunsnd.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzunsnd.x | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) |
gsumzunsnd.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
gsumzunsnd.d | ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) |
gsumzunsnd.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
gsumzunsnd.s | ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) |
Ref | Expression |
---|---|
gsumzunsnd | ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzunsnd.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | eqid 2738 | . . 3 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
3 | gsumzunsnd.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumzunsnd.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
5 | gsumzunsnd.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
6 | gsumzunsnd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 8788 | . . . 4 ⊢ {𝑀} ∈ Fin | |
8 | unfi 8917 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 585 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin) |
10 | elun 4079 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) | |
11 | gsumzunsnd.x | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝑋 ∈ 𝐵) | |
12 | elsni 4575 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝑀} → 𝑘 = 𝑀) | |
13 | gsumzunsnd.s | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 = 𝑌) | |
14 | 12, 13 | sylan2 592 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 = 𝑌) |
15 | gsumzunsnd.y | . . . . . . . 8 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑌 ∈ 𝐵) |
17 | 14, 16 | eqeltrd 2839 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ {𝑀}) → 𝑋 ∈ 𝐵) |
18 | 11, 17 | jaodan 954 | . . . . 5 ⊢ ((𝜑 ∧ (𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀})) → 𝑋 ∈ 𝐵) |
19 | 10, 18 | sylan2b 593 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
20 | gsumzunsnd.f | . . . 4 ⊢ 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) | |
21 | 19, 20 | fmptd 6970 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴 ∪ {𝑀})⟶𝐵) |
22 | gsumzunsnd.c | . . 3 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
23 | 11 | expcom 413 | . . . . . . 7 ⊢ (𝑘 ∈ 𝐴 → (𝜑 → 𝑋 ∈ 𝐵)) |
24 | 15 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑌 ∈ 𝐵) |
25 | 13, 24 | eqeltrd 2839 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑘 = 𝑀) → 𝑋 ∈ 𝐵) |
26 | 25 | expcom 413 | . . . . . . . 8 ⊢ (𝑘 = 𝑀 → (𝜑 → 𝑋 ∈ 𝐵)) |
27 | 12, 26 | syl 17 | . . . . . . 7 ⊢ (𝑘 ∈ {𝑀} → (𝜑 → 𝑋 ∈ 𝐵)) |
28 | 23, 27 | jaoi 853 | . . . . . 6 ⊢ ((𝑘 ∈ 𝐴 ∨ 𝑘 ∈ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
29 | 10, 28 | sylbi 216 | . . . . 5 ⊢ (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑 → 𝑋 ∈ 𝐵)) |
30 | 29 | impcom 407 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋 ∈ 𝐵) |
31 | fvexd 6771 | . . . 4 ⊢ (𝜑 → (0g‘𝐺) ∈ V) | |
32 | 20, 9, 30, 31 | fsuppmptdm 9069 | . . 3 ⊢ (𝜑 → 𝐹 finSupp (0g‘𝐺)) |
33 | gsumzunsnd.d | . . . 4 ⊢ (𝜑 → ¬ 𝑀 ∈ 𝐴) | |
34 | disjsn 4644 | . . . 4 ⊢ ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀 ∈ 𝐴) | |
35 | 33, 34 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝑀}) = ∅) |
36 | eqidd 2739 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀})) | |
37 | 1, 2, 3, 4, 5, 9, 21, 22, 32, 35, 36 | gsumzsplit 19443 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀})))) |
38 | 20 | reseq1i 5876 | . . . . 5 ⊢ (𝐹 ↾ 𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) |
39 | ssun1 4102 | . . . . . 6 ⊢ 𝐴 ⊆ (𝐴 ∪ {𝑀}) | |
40 | resmpt 5934 | . . . . . 6 ⊢ (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) | |
41 | 39, 40 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
42 | 38, 41 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝑘 ∈ 𝐴 ↦ 𝑋)) |
43 | 42 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ 𝐴)) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋))) |
44 | 20 | reseq1i 5876 | . . . . 5 ⊢ (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) |
45 | ssun2 4103 | . . . . . 6 ⊢ {𝑀} ⊆ (𝐴 ∪ {𝑀}) | |
46 | resmpt 5934 | . . . . . 6 ⊢ ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) | |
47 | 45, 46 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
48 | 44, 47 | eqtrid 2790 | . . . 4 ⊢ (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋)) |
49 | 48 | oveq2d 7271 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) |
50 | 43, 49 | oveq12d 7273 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝐹 ↾ 𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))) |
51 | gsumzunsnd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
52 | 1, 5, 51, 15, 13 | gsumsnd 19468 | . . 3 ⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌) |
53 | 52 | oveq2d 7271 | . 2 ⊢ (𝜑 → ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
54 | 37, 50, 53 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘 ∈ 𝐴 ↦ 𝑋)) + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 {csn 4558 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Σg cgsu 17068 Mndcmnd 18300 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 |
This theorem is referenced by: mplcoe5 21151 gsumzresunsn 31216 |
Copyright terms: Public domain | W3C validator |