MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmadd Structured version   Visualization version   GIF version

Theorem gsummptfidmadd 19892
Description: The sum of two group sums expressed as mappings with finite domain. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmadd.b 𝐵 = (Base‘𝐺)
gsummptfidmadd.p + = (+g𝐺)
gsummptfidmadd.g (𝜑𝐺 ∈ CMnd)
gsummptfidmadd.a (𝜑𝐴 ∈ Fin)
gsummptfidmadd.c ((𝜑𝑥𝐴) → 𝐶𝐵)
gsummptfidmadd.d ((𝜑𝑥𝐴) → 𝐷𝐵)
gsummptfidmadd.f 𝐹 = (𝑥𝐴𝐶)
gsummptfidmadd.h 𝐻 = (𝑥𝐴𝐷)
Assertion
Ref Expression
gsummptfidmadd (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥   𝑥, +
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)   𝐻(𝑥)

Proof of Theorem gsummptfidmadd
StepHypRef Expression
1 gsummptfidmadd.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2725 . 2 (0g𝐺) = (0g𝐺)
3 gsummptfidmadd.p . 2 + = (+g𝐺)
4 gsummptfidmadd.g . 2 (𝜑𝐺 ∈ CMnd)
5 gsummptfidmadd.a . 2 (𝜑𝐴 ∈ Fin)
6 gsummptfidmadd.c . 2 ((𝜑𝑥𝐴) → 𝐶𝐵)
7 gsummptfidmadd.d . 2 ((𝜑𝑥𝐴) → 𝐷𝐵)
8 gsummptfidmadd.f . . 3 𝐹 = (𝑥𝐴𝐶)
98a1i 11 . 2 (𝜑𝐹 = (𝑥𝐴𝐶))
10 gsummptfidmadd.h . . 3 𝐻 = (𝑥𝐴𝐷)
1110a1i 11 . 2 (𝜑𝐻 = (𝑥𝐴𝐷))
12 fvexd 6911 . . 3 (𝜑 → (0g𝐺) ∈ V)
138, 5, 6, 12fsuppmptdm 9401 . 2 (𝜑𝐹 finSupp (0g𝐺))
1410, 5, 7, 12fsuppmptdm 9401 . 2 (𝜑𝐻 finSupp (0g𝐺))
151, 2, 3, 4, 5, 6, 7, 9, 11, 13, 14gsummptfsadd 19891 1 (𝜑 → (𝐺 Σg (𝑥𝐴 ↦ (𝐶 + 𝐷))) = ((𝐺 Σg 𝐹) + (𝐺 Σg 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3461  cmpt 5232  cfv 6549  (class class class)co 7419  Fincfn 8964  Basecbs 17183  +gcplusg 17236  0gc0g 17424   Σg cgsu 17425  CMndccmn 19747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-isom 6558  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-of 7685  df-om 7872  df-1st 7994  df-2nd 7995  df-supp 8166  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9388  df-oi 9535  df-card 9964  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-fz 13520  df-fzo 13663  df-seq 14003  df-hash 14326  df-sets 17136  df-slot 17154  df-ndx 17166  df-base 17184  df-ress 17213  df-plusg 17249  df-0g 17426  df-gsum 17427  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18744  df-cntz 19280  df-cmn 19749
This theorem is referenced by:  gsummptfidmadd2  19893  srgbinomlem  20182  psdmul  22113
  Copyright terms: Public domain W3C validator