MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptfidmsplit Structured version   Visualization version   GIF version

Theorem gsummptfidmsplit 18537
Description: Split a group sum expressed as mapping with a finite domain into two parts. (Contributed by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
gsummptfidmsplit.b 𝐵 = (Base‘𝐺)
gsummptfidmsplit.p + = (+g𝐺)
gsummptfidmsplit.g (𝜑𝐺 ∈ CMnd)
gsummptfidmsplit.a (𝜑𝐴 ∈ Fin)
gsummptfidmsplit.y ((𝜑𝑘𝐴) → 𝑌𝐵)
gsummptfidmsplit.i (𝜑 → (𝐶𝐷) = ∅)
gsummptfidmsplit.u (𝜑𝐴 = (𝐶𝐷))
Assertion
Ref Expression
gsummptfidmsplit (𝜑 → (𝐺 Σg (𝑘𝐴𝑌)) = ((𝐺 Σg (𝑘𝐶𝑌)) + (𝐺 Σg (𝑘𝐷𝑌))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝐶,𝑘   𝐷,𝑘   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝐺(𝑘)   𝑌(𝑘)

Proof of Theorem gsummptfidmsplit
StepHypRef Expression
1 gsummptfidmsplit.b . 2 𝐵 = (Base‘𝐺)
2 eqid 2771 . 2 (0g𝐺) = (0g𝐺)
3 gsummptfidmsplit.p . 2 + = (+g𝐺)
4 gsummptfidmsplit.g . 2 (𝜑𝐺 ∈ CMnd)
5 gsummptfidmsplit.a . 2 (𝜑𝐴 ∈ Fin)
6 gsummptfidmsplit.y . 2 ((𝜑𝑘𝐴) → 𝑌𝐵)
7 eqid 2771 . . 3 (𝑘𝐴𝑌) = (𝑘𝐴𝑌)
8 fvexd 6344 . . 3 (𝜑 → (0g𝐺) ∈ V)
97, 5, 6, 8fsuppmptdm 8442 . 2 (𝜑 → (𝑘𝐴𝑌) finSupp (0g𝐺))
10 gsummptfidmsplit.i . 2 (𝜑 → (𝐶𝐷) = ∅)
11 gsummptfidmsplit.u . 2 (𝜑𝐴 = (𝐶𝐷))
121, 2, 3, 4, 5, 6, 9, 10, 11gsumsplit2 18536 1 (𝜑 → (𝐺 Σg (𝑘𝐴𝑌)) = ((𝐺 Σg (𝑘𝐶𝑌)) + (𝐺 Σg (𝑘𝐷𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1631  wcel 2145  Vcvv 3351  cun 3721  cin 3722  c0 4063  cmpt 4863  cfv 6031  (class class class)co 6793  Fincfn 8109  Basecbs 16064  +gcplusg 16149  0gc0g 16308   Σg cgsu 16309  CMndccmn 18400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-oadd 7717  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-cntz 17957  df-cmn 18402
This theorem is referenced by:  gsummptfzsplit  18539  gsummptfzsplitl  18540  gsumunsnfd  18563  gsummptun  18570  telgsumfzslem  18593  mdetdiaglem  20622  mdetrlin  20626  mdetrsca  20627  m2detleib  20655  smadiadet  20695
  Copyright terms: Public domain W3C validator