| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptshft | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| gsummptshft.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptshft.z | ⊢ 0 = (0g‘𝐺) |
| gsummptshft.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptshft.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| gsummptshft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsummptshft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummptshft.a | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) |
| gsummptshft.c | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| gsummptshft | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptshft.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptshft.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummptshft.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | ovexd 7389 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
| 5 | gsummptshft.a | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) | |
| 6 | 5 | fmpttd 7056 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵) |
| 7 | eqid 2733 | . . . 4 ⊢ (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) | |
| 8 | fzfid 13884 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
| 9 | 2 | fvexi 6844 | . . . . 5 ⊢ 0 ∈ V |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 11 | 7, 8, 5, 10 | fsuppmptdm 9269 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 ) |
| 12 | gsummptshft.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 13 | gsummptshft.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | gsummptshft.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 15 | 12, 13, 14 | mptfzshft 15689 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| 16 | 1, 2, 3, 4, 6, 11, 15 | gsumf1o 19832 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))))) |
| 17 | elfzelz 13428 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
| 18 | 17 | zcnd 12586 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ) |
| 19 | 12 | zcnd 12586 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 20 | npcan 11378 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) | |
| 21 | 18, 19, 20 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) |
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
| 23 | 21, 22 | eqeltrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 24 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 26 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
| 27 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
| 28 | 26, 27 | zsubcld 12590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
| 29 | fzaddel 13462 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | |
| 30 | 25, 28, 27, 29 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 31 | 23, 30 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ (𝑀...𝑁)) |
| 32 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) | |
| 33 | eqidd 2734 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) | |
| 34 | gsummptshft.c | . . . 4 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) | |
| 35 | 31, 32, 33, 34 | fmptco 7070 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)) |
| 36 | 35 | oveq2d 7370 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| 37 | 16, 36 | eqtrd 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5176 ∘ ccom 5625 ‘cfv 6488 (class class class)co 7354 ℂcc 11013 + caddc 11018 − cmin 11353 ℤcz 12477 ...cfz 13411 Basecbs 17124 0gc0g 17347 Σg cgsu 17348 CMndccmn 19696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-isom 6497 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-supp 8099 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-fsupp 9255 df-oi 9405 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-seq 13913 df-hash 14242 df-0g 17349 df-gsum 17350 df-mgm 18552 df-sgrp 18631 df-mnd 18647 df-cntz 19233 df-cmn 19698 |
| This theorem is referenced by: srgbinomlem4 20151 cpmadugsumlemF 22794 |
| Copyright terms: Public domain | W3C validator |