MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   GIF version

Theorem gsummptshft 19954
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b 𝐵 = (Base‘𝐺)
gsummptshft.z 0 = (0g𝐺)
gsummptshft.g (𝜑𝐺 ∈ CMnd)
gsummptshft.k (𝜑𝐾 ∈ ℤ)
gsummptshft.m (𝜑𝑀 ∈ ℤ)
gsummptshft.n (𝜑𝑁 ∈ ℤ)
gsummptshft.a ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
gsummptshft.c (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
Assertion
Ref Expression
gsummptshft (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑗,𝑘)   0 (𝑗,𝑘)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptshft.z . . 3 0 = (0g𝐺)
3 gsummptshft.g . . 3 (𝜑𝐺 ∈ CMnd)
4 ovexd 7466 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
5 gsummptshft.a . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
65fmpttd 7135 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵)
7 eqid 2737 . . . 4 (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)
8 fzfid 14014 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
92fvexi 6920 . . . . 5 0 ∈ V
109a1i 11 . . . 4 (𝜑0 ∈ V)
117, 8, 5, 10fsuppmptdm 9416 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 )
12 gsummptshft.k . . . 4 (𝜑𝐾 ∈ ℤ)
13 gsummptshft.m . . . 4 (𝜑𝑀 ∈ ℤ)
14 gsummptshft.n . . . 4 (𝜑𝑁 ∈ ℤ)
1512, 13, 14mptfzshft 15814 . . 3 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
161, 2, 3, 4, 6, 11, 15gsumf1o 19934 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))))
17 elfzelz 13564 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
1817zcnd 12723 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
1912zcnd 12723 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
20 npcan 11517 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘𝐾) + 𝐾) = 𝑘)
2118, 19, 20syl2anr 597 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) = 𝑘)
22 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2321, 22eqeltrd 2841 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2413, 14jca 511 . . . . . . 7 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2524adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2617adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ)
2712adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
2826, 27zsubcld 12727 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ ℤ)
29 fzaddel 13598 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3025, 28, 27, 29syl12anc 837 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3123, 30mpbird 257 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ (𝑀...𝑁))
32 eqidd 2738 . . . 4 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))
33 eqidd 2738 . . . 4 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴))
34 gsummptshft.c . . . 4 (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
3531, 32, 33, 34fmptco 7149 . . 3 (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))
3635oveq2d 7447 . 2 (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
3716, 36eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  cmpt 5225  ccom 5689  cfv 6561  (class class class)co 7431  cc 11153   + caddc 11158  cmin 11492  cz 12613  ...cfz 13547  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  srgbinomlem4  20226  cpmadugsumlemF  22882
  Copyright terms: Public domain W3C validator