![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptshft | Structured version Visualization version GIF version |
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
gsummptshft.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptshft.z | ⊢ 0 = (0g‘𝐺) |
gsummptshft.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptshft.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
gsummptshft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsummptshft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
gsummptshft.a | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) |
gsummptshft.c | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
gsummptshft | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptshft.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptshft.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptshft.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | ovexd 7443 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
5 | gsummptshft.a | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) | |
6 | 5 | fmpttd 7114 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵) |
7 | eqid 2732 | . . . 4 ⊢ (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) | |
8 | fzfid 13937 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
9 | 2 | fvexi 6905 | . . . . 5 ⊢ 0 ∈ V |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
11 | 7, 8, 5, 10 | fsuppmptdm 9373 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 ) |
12 | gsummptshft.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
13 | gsummptshft.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | gsummptshft.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | mptfzshft 15723 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
16 | 1, 2, 3, 4, 6, 11, 15 | gsumf1o 19783 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))))) |
17 | elfzelz 13500 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
18 | 17 | zcnd 12666 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ) |
19 | 12 | zcnd 12666 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
20 | npcan 11468 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) | |
21 | 18, 19, 20 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) |
22 | simpr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
23 | 21, 22 | eqeltrd 2833 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
24 | 13, 14 | jca 512 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
25 | 24 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
26 | 17 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
27 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
28 | 26, 27 | zsubcld 12670 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
29 | fzaddel 13534 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | |
30 | 25, 28, 27, 29 | syl12anc 835 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
31 | 23, 30 | mpbird 256 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ (𝑀...𝑁)) |
32 | eqidd 2733 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) | |
33 | eqidd 2733 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) | |
34 | gsummptshft.c | . . . 4 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) | |
35 | 31, 32, 33, 34 | fmptco 7126 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)) |
36 | 35 | oveq2d 7424 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
37 | 16, 36 | eqtrd 2772 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ↦ cmpt 5231 ∘ ccom 5680 ‘cfv 6543 (class class class)co 7408 ℂcc 11107 + caddc 11112 − cmin 11443 ℤcz 12557 ...cfz 13483 Basecbs 17143 0gc0g 17384 Σg cgsu 17385 CMndccmn 19647 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-cntz 19180 df-cmn 19649 |
This theorem is referenced by: srgbinomlem4 20051 cpmadugsumlemF 22377 |
Copyright terms: Public domain | W3C validator |