| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptshft | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| gsummptshft.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptshft.z | ⊢ 0 = (0g‘𝐺) |
| gsummptshft.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptshft.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| gsummptshft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsummptshft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummptshft.a | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) |
| gsummptshft.c | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| gsummptshft | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptshft.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptshft.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummptshft.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | ovexd 7381 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
| 5 | gsummptshft.a | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) | |
| 6 | 5 | fmpttd 7048 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵) |
| 7 | eqid 2731 | . . . 4 ⊢ (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) | |
| 8 | fzfid 13880 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
| 9 | 2 | fvexi 6836 | . . . . 5 ⊢ 0 ∈ V |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 11 | 7, 8, 5, 10 | fsuppmptdm 9260 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 ) |
| 12 | gsummptshft.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 13 | gsummptshft.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | gsummptshft.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 15 | 12, 13, 14 | mptfzshft 15685 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| 16 | 1, 2, 3, 4, 6, 11, 15 | gsumf1o 19829 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))))) |
| 17 | elfzelz 13424 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
| 18 | 17 | zcnd 12578 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ) |
| 19 | 12 | zcnd 12578 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 20 | npcan 11369 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) | |
| 21 | 18, 19, 20 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) |
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
| 23 | 21, 22 | eqeltrd 2831 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 24 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 26 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
| 27 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
| 28 | 26, 27 | zsubcld 12582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
| 29 | fzaddel 13458 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | |
| 30 | 25, 28, 27, 29 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 31 | 23, 30 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ (𝑀...𝑁)) |
| 32 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) | |
| 33 | eqidd 2732 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) | |
| 34 | gsummptshft.c | . . . 4 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) | |
| 35 | 31, 32, 33, 34 | fmptco 7062 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)) |
| 36 | 35 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| 37 | 16, 36 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5172 ∘ ccom 5620 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 + caddc 11009 − cmin 11344 ℤcz 12468 ...cfz 13407 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 CMndccmn 19693 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-0g 17345 df-gsum 17346 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cntz 19230 df-cmn 19695 |
| This theorem is referenced by: srgbinomlem4 20148 cpmadugsumlemF 22792 |
| Copyright terms: Public domain | W3C validator |