![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsummptshft | Structured version Visualization version GIF version |
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
gsummptshft.b | ⊢ 𝐵 = (Base‘𝐺) |
gsummptshft.z | ⊢ 0 = (0g‘𝐺) |
gsummptshft.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
gsummptshft.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
gsummptshft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
gsummptshft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
gsummptshft.a | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) |
gsummptshft.c | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) |
Ref | Expression |
---|---|
gsummptshft | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummptshft.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsummptshft.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsummptshft.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
4 | ovexd 7010 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
5 | gsummptshft.a | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) | |
6 | 5 | fmpttd 6702 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵) |
7 | eqid 2779 | . . . 4 ⊢ (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) | |
8 | fzfid 13156 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
9 | 2 | fvexi 6513 | . . . . 5 ⊢ 0 ∈ V |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
11 | 7, 8, 5, 10 | fsuppmptdm 8639 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 ) |
12 | gsummptshft.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
13 | gsummptshft.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
14 | gsummptshft.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
15 | 12, 13, 14 | mptfzshft 14993 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
16 | 1, 2, 3, 4, 6, 11, 15 | gsumf1o 18790 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))))) |
17 | elfzelz 12724 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
18 | 17 | zcnd 11901 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ) |
19 | 12 | zcnd 11901 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
20 | npcan 10696 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) | |
21 | 18, 19, 20 | syl2anr 587 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) |
22 | simpr 477 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
23 | 21, 22 | eqeltrd 2867 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
24 | 13, 14 | jca 504 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
25 | 24 | adantr 473 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
26 | 17 | adantl 474 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
27 | 12 | adantr 473 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
28 | 26, 27 | zsubcld 11905 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
29 | fzaddel 12757 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | |
30 | 25, 28, 27, 29 | syl12anc 824 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
31 | 23, 30 | mpbird 249 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ (𝑀...𝑁)) |
32 | eqidd 2780 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) | |
33 | eqidd 2780 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) | |
34 | gsummptshft.c | . . . 4 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) | |
35 | 31, 32, 33, 34 | fmptco 6714 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)) |
36 | 35 | oveq2d 6992 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
37 | 16, 36 | eqtrd 2815 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ↦ cmpt 5008 ∘ ccom 5411 ‘cfv 6188 (class class class)co 6976 ℂcc 10333 + caddc 10338 − cmin 10670 ℤcz 11793 ...cfz 12708 Basecbs 16339 0gc0g 16569 Σg cgsu 16570 CMndccmn 18666 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-supp 7634 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-oadd 7909 df-er 8089 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-fsupp 8629 df-oi 8769 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-nn 11440 df-n0 11708 df-z 11794 df-uz 12059 df-fz 12709 df-fzo 12850 df-seq 13185 df-hash 13506 df-0g 16571 df-gsum 16572 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-cntz 18218 df-cmn 18668 |
This theorem is referenced by: srgbinomlem4 19016 cpmadugsumlemF 21188 |
Copyright terms: Public domain | W3C validator |