| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsummptshft | Structured version Visualization version GIF version | ||
| Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| gsummptshft.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsummptshft.z | ⊢ 0 = (0g‘𝐺) |
| gsummptshft.g | ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| gsummptshft.k | ⊢ (𝜑 → 𝐾 ∈ ℤ) |
| gsummptshft.m | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| gsummptshft.n | ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| gsummptshft.a | ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) |
| gsummptshft.c | ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) |
| Ref | Expression |
|---|---|
| gsummptshft | ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummptshft.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsummptshft.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsummptshft.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) | |
| 4 | ovexd 7388 | . . 3 ⊢ (𝜑 → (𝑀...𝑁) ∈ V) | |
| 5 | gsummptshft.a | . . . 4 ⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...𝑁)) → 𝐴 ∈ 𝐵) | |
| 6 | 5 | fmpttd 7053 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵) |
| 7 | eqid 2729 | . . . 4 ⊢ (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) | |
| 8 | fzfid 13898 | . . . 4 ⊢ (𝜑 → (𝑀...𝑁) ∈ Fin) | |
| 9 | 2 | fvexi 6840 | . . . . 5 ⊢ 0 ∈ V |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 11 | 7, 8, 5, 10 | fsuppmptdm 9285 | . . 3 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 ) |
| 12 | gsummptshft.k | . . . 4 ⊢ (𝜑 → 𝐾 ∈ ℤ) | |
| 13 | gsummptshft.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 14 | gsummptshft.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) | |
| 15 | 12, 13, 14 | mptfzshft 15703 | . . 3 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁)) |
| 16 | 1, 2, 3, 4, 6, 11, 15 | gsumf1o 19813 | . 2 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))))) |
| 17 | elfzelz 13445 | . . . . . . . 8 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ) | |
| 18 | 17 | zcnd 12599 | . . . . . . 7 ⊢ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ) |
| 19 | 12 | zcnd 12599 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 20 | npcan 11390 | . . . . . . 7 ⊢ ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) | |
| 21 | 18, 19, 20 | syl2anr 597 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) = 𝑘) |
| 22 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) | |
| 23 | 21, 22 | eqeltrd 2828 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) |
| 24 | 13, 14 | jca 511 | . . . . . . 7 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 25 | 24 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
| 26 | 17 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ) |
| 27 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ) |
| 28 | 26, 27 | zsubcld 12603 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ ℤ) |
| 29 | fzaddel 13479 | . . . . . 6 ⊢ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘 − 𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) | |
| 30 | 25, 28, 27, 29 | syl12anc 836 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘 − 𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘 − 𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))) |
| 31 | 23, 30 | mpbird 257 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘 − 𝐾) ∈ (𝑀...𝑁)) |
| 32 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) | |
| 33 | eqidd 2730 | . . . 4 ⊢ (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) | |
| 34 | gsummptshft.c | . . . 4 ⊢ (𝑗 = (𝑘 − 𝐾) → 𝐴 = 𝐶) | |
| 35 | 31, 32, 33, 34 | fmptco 7067 | . . 3 ⊢ (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)) |
| 36 | 35 | oveq2d 7369 | . 2 ⊢ (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘 − 𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| 37 | 16, 36 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ↦ cmpt 5176 ∘ ccom 5627 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 + caddc 11031 − cmin 11365 ℤcz 12489 ...cfz 13428 Basecbs 17138 0gc0g 17361 Σg cgsu 17362 CMndccmn 19677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-cntz 19214 df-cmn 19679 |
| This theorem is referenced by: srgbinomlem4 20132 cpmadugsumlemF 22779 |
| Copyright terms: Public domain | W3C validator |