MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   GIF version

Theorem gsummptshft 19537
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b 𝐵 = (Base‘𝐺)
gsummptshft.z 0 = (0g𝐺)
gsummptshft.g (𝜑𝐺 ∈ CMnd)
gsummptshft.k (𝜑𝐾 ∈ ℤ)
gsummptshft.m (𝜑𝑀 ∈ ℤ)
gsummptshft.n (𝜑𝑁 ∈ ℤ)
gsummptshft.a ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
gsummptshft.c (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
Assertion
Ref Expression
gsummptshft (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑗,𝑘)   0 (𝑗,𝑘)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptshft.z . . 3 0 = (0g𝐺)
3 gsummptshft.g . . 3 (𝜑𝐺 ∈ CMnd)
4 ovexd 7310 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
5 gsummptshft.a . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
65fmpttd 6989 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵)
7 eqid 2738 . . . 4 (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)
8 fzfid 13693 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
92fvexi 6788 . . . . 5 0 ∈ V
109a1i 11 . . . 4 (𝜑0 ∈ V)
117, 8, 5, 10fsuppmptdm 9139 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 )
12 gsummptshft.k . . . 4 (𝜑𝐾 ∈ ℤ)
13 gsummptshft.m . . . 4 (𝜑𝑀 ∈ ℤ)
14 gsummptshft.n . . . 4 (𝜑𝑁 ∈ ℤ)
1512, 13, 14mptfzshft 15490 . . 3 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
161, 2, 3, 4, 6, 11, 15gsumf1o 19517 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))))
17 elfzelz 13256 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
1817zcnd 12427 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
1912zcnd 12427 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
20 npcan 11230 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘𝐾) + 𝐾) = 𝑘)
2118, 19, 20syl2anr 597 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) = 𝑘)
22 simpr 485 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2321, 22eqeltrd 2839 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2413, 14jca 512 . . . . . . 7 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2524adantr 481 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2617adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ)
2712adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
2826, 27zsubcld 12431 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ ℤ)
29 fzaddel 13290 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3025, 28, 27, 29syl12anc 834 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3123, 30mpbird 256 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ (𝑀...𝑁))
32 eqidd 2739 . . . 4 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))
33 eqidd 2739 . . . 4 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴))
34 gsummptshft.c . . . 4 (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
3531, 32, 33, 34fmptco 7001 . . 3 (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))
3635oveq2d 7291 . 2 (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
3716, 36eqtrd 2778 1 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cmpt 5157  ccom 5593  cfv 6433  (class class class)co 7275  cc 10869   + caddc 10874  cmin 11205  cz 12319  ...cfz 13239  Basecbs 16912  0gc0g 17150   Σg cgsu 17151  CMndccmn 19386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-0g 17152  df-gsum 17153  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-cntz 18923  df-cmn 19388
This theorem is referenced by:  srgbinomlem4  19779  cpmadugsumlemF  22025
  Copyright terms: Public domain W3C validator