MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   GIF version

Theorem gsummptshft 19968
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b 𝐵 = (Base‘𝐺)
gsummptshft.z 0 = (0g𝐺)
gsummptshft.g (𝜑𝐺 ∈ CMnd)
gsummptshft.k (𝜑𝐾 ∈ ℤ)
gsummptshft.m (𝜑𝑀 ∈ ℤ)
gsummptshft.n (𝜑𝑁 ∈ ℤ)
gsummptshft.a ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
gsummptshft.c (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
Assertion
Ref Expression
gsummptshft (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑗,𝑘)   0 (𝑗,𝑘)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptshft.z . . 3 0 = (0g𝐺)
3 gsummptshft.g . . 3 (𝜑𝐺 ∈ CMnd)
4 ovexd 7465 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
5 gsummptshft.a . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
65fmpttd 7134 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵)
7 eqid 2734 . . . 4 (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)
8 fzfid 14010 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
92fvexi 6920 . . . . 5 0 ∈ V
109a1i 11 . . . 4 (𝜑0 ∈ V)
117, 8, 5, 10fsuppmptdm 9413 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 )
12 gsummptshft.k . . . 4 (𝜑𝐾 ∈ ℤ)
13 gsummptshft.m . . . 4 (𝜑𝑀 ∈ ℤ)
14 gsummptshft.n . . . 4 (𝜑𝑁 ∈ ℤ)
1512, 13, 14mptfzshft 15810 . . 3 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
161, 2, 3, 4, 6, 11, 15gsumf1o 19948 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))))
17 elfzelz 13560 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
1817zcnd 12720 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
1912zcnd 12720 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
20 npcan 11514 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘𝐾) + 𝐾) = 𝑘)
2118, 19, 20syl2anr 597 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) = 𝑘)
22 simpr 484 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2321, 22eqeltrd 2838 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2413, 14jca 511 . . . . . . 7 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2524adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2617adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ)
2712adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
2826, 27zsubcld 12724 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ ℤ)
29 fzaddel 13594 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3025, 28, 27, 29syl12anc 837 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3123, 30mpbird 257 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ (𝑀...𝑁))
32 eqidd 2735 . . . 4 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))
33 eqidd 2735 . . . 4 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴))
34 gsummptshft.c . . . 4 (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
3531, 32, 33, 34fmptco 7148 . . 3 (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))
3635oveq2d 7446 . 2 (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
3716, 36eqtrd 2774 1 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  Vcvv 3477  cmpt 5230  ccom 5692  cfv 6562  (class class class)co 7430  cc 11150   + caddc 11155  cmin 11489  cz 12610  ...cfz 13543  Basecbs 17244  0gc0g 17485   Σg cgsu 17486  CMndccmn 19812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-0g 17487  df-gsum 17488  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-cntz 19347  df-cmn 19814
This theorem is referenced by:  srgbinomlem4  20246  cpmadugsumlemF  22897
  Copyright terms: Public domain W3C validator