MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   GIF version

Theorem gsummptshft 19048
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b 𝐵 = (Base‘𝐺)
gsummptshft.z 0 = (0g𝐺)
gsummptshft.g (𝜑𝐺 ∈ CMnd)
gsummptshft.k (𝜑𝐾 ∈ ℤ)
gsummptshft.m (𝜑𝑀 ∈ ℤ)
gsummptshft.n (𝜑𝑁 ∈ ℤ)
gsummptshft.a ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
gsummptshft.c (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
Assertion
Ref Expression
gsummptshft (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑗,𝑘)   0 (𝑗,𝑘)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptshft.z . . 3 0 = (0g𝐺)
3 gsummptshft.g . . 3 (𝜑𝐺 ∈ CMnd)
4 ovexd 7183 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
5 gsummptshft.a . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
65fmpttd 6872 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵)
7 eqid 2819 . . . 4 (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)
8 fzfid 13333 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
92fvexi 6677 . . . . 5 0 ∈ V
109a1i 11 . . . 4 (𝜑0 ∈ V)
117, 8, 5, 10fsuppmptdm 8836 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 )
12 gsummptshft.k . . . 4 (𝜑𝐾 ∈ ℤ)
13 gsummptshft.m . . . 4 (𝜑𝑀 ∈ ℤ)
14 gsummptshft.n . . . 4 (𝜑𝑁 ∈ ℤ)
1512, 13, 14mptfzshft 15125 . . 3 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
161, 2, 3, 4, 6, 11, 15gsumf1o 19028 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))))
17 elfzelz 12900 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
1817zcnd 12080 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
1912zcnd 12080 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
20 npcan 10887 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘𝐾) + 𝐾) = 𝑘)
2118, 19, 20syl2anr 598 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) = 𝑘)
22 simpr 487 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2321, 22eqeltrd 2911 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2413, 14jca 514 . . . . . . 7 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2524adantr 483 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2617adantl 484 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ)
2712adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
2826, 27zsubcld 12084 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ ℤ)
29 fzaddel 12933 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3025, 28, 27, 29syl12anc 834 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3123, 30mpbird 259 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ (𝑀...𝑁))
32 eqidd 2820 . . . 4 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))
33 eqidd 2820 . . . 4 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴))
34 gsummptshft.c . . . 4 (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
3531, 32, 33, 34fmptco 6884 . . 3 (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))
3635oveq2d 7164 . 2 (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
3716, 36eqtrd 2854 1 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1531  wcel 2108  Vcvv 3493  cmpt 5137  ccom 5552  cfv 6348  (class class class)co 7148  cc 10527   + caddc 10532  cmin 10862  cz 11973  ...cfz 12884  Basecbs 16475  0gc0g 16705   Σg cgsu 16706  CMndccmn 18898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-supp 7823  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fsupp 8826  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-0g 16707  df-gsum 16708  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-cntz 18439  df-cmn 18900
This theorem is referenced by:  srgbinomlem4  19285  cpmadugsumlemF  21476
  Copyright terms: Public domain W3C validator