| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1n0ima | Structured version Visualization version GIF version | ||
| Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1z.d | ⊢ 𝐷 = (deg1‘𝑅) |
| deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| deg1z.z | ⊢ 0 = (0g‘𝑃) |
| deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
| Ref | Expression |
|---|---|
| deg1n0ima | ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | |
| 2 | eldifi 4084 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | |
| 3 | 2 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) |
| 4 | eldifsni 4744 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ≠ 0 ) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ≠ 0 ) |
| 6 | deg1z.d | . . . . 5 ⊢ 𝐷 = (deg1‘𝑅) | |
| 7 | deg1z.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 8 | deg1z.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
| 9 | deg1nn0cl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
| 10 | 6, 7, 8, 9 | deg1nn0cl 26009 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → (𝐷‘𝑥) ∈ ℕ0) |
| 11 | 1, 3, 5, 10 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷‘𝑥) ∈ ℕ0) |
| 12 | 11 | ralrimiva 3121 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0) |
| 13 | 6, 7, 9 | deg1xrf 26002 | . . . 4 ⊢ 𝐷:𝐵⟶ℝ* |
| 14 | ffun 6659 | . . . 4 ⊢ (𝐷:𝐵⟶ℝ* → Fun 𝐷) | |
| 15 | 13, 14 | ax-mp 5 | . . 3 ⊢ Fun 𝐷 |
| 16 | difss 4089 | . . . 4 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
| 17 | 13 | fdmi 6667 | . . . 4 ⊢ dom 𝐷 = 𝐵 |
| 18 | 16, 17 | sseqtrri 3987 | . . 3 ⊢ (𝐵 ∖ { 0 }) ⊆ dom 𝐷 |
| 19 | funimass4 6891 | . . 3 ⊢ ((Fun 𝐷 ∧ (𝐵 ∖ { 0 }) ⊆ dom 𝐷) → ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0)) | |
| 20 | 15, 18, 19 | mp2an 692 | . 2 ⊢ ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0) |
| 21 | 12, 20 | sylibr 234 | 1 ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3902 ⊆ wss 3905 {csn 4579 dom cdm 5623 “ cima 5626 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 ℝ*cxr 11167 ℕ0cn0 12402 Basecbs 17138 0gc0g 17361 Ringcrg 20136 Poly1cpl1 22077 deg1cdg1 25975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-subg 19020 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-ur 20085 df-ring 20138 df-cring 20139 df-cnfld 21280 df-psr 21834 df-mpl 21836 df-opsr 21838 df-psr1 22080 df-ply1 22082 df-mdeg 25976 df-deg1 25977 |
| This theorem is referenced by: ig1peu 26096 ig1pdvds 26101 |
| Copyright terms: Public domain | W3C validator |