![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > deg1n0ima | Structured version Visualization version GIF version |
Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | β’ π· = ( deg1 βπ ) |
deg1z.p | β’ π = (Poly1βπ ) |
deg1z.z | β’ 0 = (0gβπ) |
deg1nn0cl.b | β’ π΅ = (Baseβπ) |
Ref | Expression |
---|---|
deg1n0ima | β’ (π β Ring β (π· β (π΅ β { 0 })) β β0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . 4 β’ ((π β Ring β§ π₯ β (π΅ β { 0 })) β π β Ring) | |
2 | eldifi 4127 | . . . . 5 β’ (π₯ β (π΅ β { 0 }) β π₯ β π΅) | |
3 | 2 | adantl 483 | . . . 4 β’ ((π β Ring β§ π₯ β (π΅ β { 0 })) β π₯ β π΅) |
4 | eldifsni 4794 | . . . . 5 β’ (π₯ β (π΅ β { 0 }) β π₯ β 0 ) | |
5 | 4 | adantl 483 | . . . 4 β’ ((π β Ring β§ π₯ β (π΅ β { 0 })) β π₯ β 0 ) |
6 | deg1z.d | . . . . 5 β’ π· = ( deg1 βπ ) | |
7 | deg1z.p | . . . . 5 β’ π = (Poly1βπ ) | |
8 | deg1z.z | . . . . 5 β’ 0 = (0gβπ) | |
9 | deg1nn0cl.b | . . . . 5 β’ π΅ = (Baseβπ) | |
10 | 6, 7, 8, 9 | deg1nn0cl 25606 | . . . 4 β’ ((π β Ring β§ π₯ β π΅ β§ π₯ β 0 ) β (π·βπ₯) β β0) |
11 | 1, 3, 5, 10 | syl3anc 1372 | . . 3 β’ ((π β Ring β§ π₯ β (π΅ β { 0 })) β (π·βπ₯) β β0) |
12 | 11 | ralrimiva 3147 | . 2 β’ (π β Ring β βπ₯ β (π΅ β { 0 })(π·βπ₯) β β0) |
13 | 6, 7, 9 | deg1xrf 25599 | . . . 4 β’ π·:π΅βΆβ* |
14 | ffun 6721 | . . . 4 β’ (π·:π΅βΆβ* β Fun π·) | |
15 | 13, 14 | ax-mp 5 | . . 3 β’ Fun π· |
16 | difss 4132 | . . . 4 β’ (π΅ β { 0 }) β π΅ | |
17 | 13 | fdmi 6730 | . . . 4 β’ dom π· = π΅ |
18 | 16, 17 | sseqtrri 4020 | . . 3 β’ (π΅ β { 0 }) β dom π· |
19 | funimass4 6957 | . . 3 β’ ((Fun π· β§ (π΅ β { 0 }) β dom π·) β ((π· β (π΅ β { 0 })) β β0 β βπ₯ β (π΅ β { 0 })(π·βπ₯) β β0)) | |
20 | 15, 18, 19 | mp2an 691 | . 2 β’ ((π· β (π΅ β { 0 })) β β0 β βπ₯ β (π΅ β { 0 })(π·βπ₯) β β0) |
21 | 12, 20 | sylibr 233 | 1 β’ (π β Ring β (π· β (π΅ β { 0 })) β β0) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 β wne 2941 βwral 3062 β cdif 3946 β wss 3949 {csn 4629 dom cdm 5677 β cima 5680 Fun wfun 6538 βΆwf 6540 βcfv 6544 β*cxr 11247 β0cn0 12472 Basecbs 17144 0gc0g 17385 Ringcrg 20056 Poly1cpl1 21701 deg1 cdg1 25569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-of 7670 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-fz 13485 df-fzo 13628 df-seq 13967 df-hash 14291 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-submnd 18672 df-grp 18822 df-minusg 18823 df-subg 19003 df-cntz 19181 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-cnfld 20945 df-psr 21462 df-mpl 21464 df-opsr 21466 df-psr1 21704 df-ply1 21706 df-mdeg 25570 df-deg1 25571 |
This theorem is referenced by: ig1peu 25689 ig1pdvds 25694 |
Copyright terms: Public domain | W3C validator |