Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > deg1n0ima | Structured version Visualization version GIF version |
Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
Ref | Expression |
---|---|
deg1z.d | ⊢ 𝐷 = ( deg1 ‘𝑅) |
deg1z.p | ⊢ 𝑃 = (Poly1‘𝑅) |
deg1z.z | ⊢ 0 = (0g‘𝑃) |
deg1nn0cl.b | ⊢ 𝐵 = (Base‘𝑃) |
Ref | Expression |
---|---|
deg1n0ima | ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 487 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring) | |
2 | eldifi 4028 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ∈ 𝐵) | |
3 | 2 | adantl 486 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ∈ 𝐵) |
4 | eldifsni 4673 | . . . . 5 ⊢ (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥 ≠ 0 ) | |
5 | 4 | adantl 486 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥 ≠ 0 ) |
6 | deg1z.d | . . . . 5 ⊢ 𝐷 = ( deg1 ‘𝑅) | |
7 | deg1z.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
8 | deg1z.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
9 | deg1nn0cl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑃) | |
10 | 6, 7, 8, 9 | deg1nn0cl 24773 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ 𝐵 ∧ 𝑥 ≠ 0 ) → (𝐷‘𝑥) ∈ ℕ0) |
11 | 1, 3, 5, 10 | syl3anc 1369 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷‘𝑥) ∈ ℕ0) |
12 | 11 | ralrimiva 3111 | . 2 ⊢ (𝑅 ∈ Ring → ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0) |
13 | 6, 7, 9 | deg1xrf 24766 | . . . 4 ⊢ 𝐷:𝐵⟶ℝ* |
14 | ffun 6494 | . . . 4 ⊢ (𝐷:𝐵⟶ℝ* → Fun 𝐷) | |
15 | 13, 14 | ax-mp 5 | . . 3 ⊢ Fun 𝐷 |
16 | difss 4033 | . . . 4 ⊢ (𝐵 ∖ { 0 }) ⊆ 𝐵 | |
17 | 13 | fdmi 6502 | . . . 4 ⊢ dom 𝐷 = 𝐵 |
18 | 16, 17 | sseqtrri 3925 | . . 3 ⊢ (𝐵 ∖ { 0 }) ⊆ dom 𝐷 |
19 | funimass4 6711 | . . 3 ⊢ ((Fun 𝐷 ∧ (𝐵 ∖ { 0 }) ⊆ dom 𝐷) → ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0)) | |
20 | 15, 18, 19 | mp2an 692 | . 2 ⊢ ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷‘𝑥) ∈ ℕ0) |
21 | 12, 20 | sylibr 237 | 1 ⊢ (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 ≠ wne 2949 ∀wral 3068 ∖ cdif 3851 ⊆ wss 3854 {csn 4515 dom cdm 5517 “ cima 5520 Fun wfun 6322 ⟶wf 6324 ‘cfv 6328 ℝ*cxr 10697 ℕ0cn0 11919 Basecbs 16526 0gc0g 16756 Ringcrg 19350 Poly1cpl1 20886 deg1 cdg1 24736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5149 ax-sep 5162 ax-nul 5169 ax-pow 5227 ax-pr 5291 ax-un 7452 ax-cnex 10616 ax-resscn 10617 ax-1cn 10618 ax-icn 10619 ax-addcl 10620 ax-addrcl 10621 ax-mulcl 10622 ax-mulrcl 10623 ax-mulcom 10624 ax-addass 10625 ax-mulass 10626 ax-distr 10627 ax-i2m1 10628 ax-1ne0 10629 ax-1rid 10630 ax-rnegex 10631 ax-rrecex 10632 ax-cnre 10633 ax-pre-lttri 10634 ax-pre-lttrn 10635 ax-pre-ltadd 10636 ax-pre-mulgt0 10637 ax-pre-sup 10638 ax-addf 10639 ax-mulf 10640 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2899 df-ne 2950 df-nel 3054 df-ral 3073 df-rex 3074 df-reu 3075 df-rmo 3076 df-rab 3077 df-v 3409 df-sbc 3694 df-csb 3802 df-dif 3857 df-un 3859 df-in 3861 df-ss 3871 df-pss 3873 df-nul 4222 df-if 4414 df-pw 4489 df-sn 4516 df-pr 4518 df-tp 4520 df-op 4522 df-uni 4792 df-int 4832 df-iun 4878 df-br 5026 df-opab 5088 df-mpt 5106 df-tr 5132 df-id 5423 df-eprel 5428 df-po 5436 df-so 5437 df-fr 5476 df-se 5477 df-we 5478 df-xp 5523 df-rel 5524 df-cnv 5525 df-co 5526 df-dm 5527 df-rn 5528 df-res 5529 df-ima 5530 df-pred 6119 df-ord 6165 df-on 6166 df-lim 6167 df-suc 6168 df-iota 6287 df-fun 6330 df-fn 6331 df-f 6332 df-f1 6333 df-fo 6334 df-f1o 6335 df-fv 6336 df-isom 6337 df-riota 7101 df-ov 7146 df-oprab 7147 df-mpo 7148 df-of 7398 df-om 7573 df-1st 7686 df-2nd 7687 df-supp 7829 df-wrecs 7950 df-recs 8011 df-rdg 8049 df-1o 8105 df-oadd 8109 df-er 8292 df-map 8411 df-en 8521 df-dom 8522 df-sdom 8523 df-fin 8524 df-fsupp 8852 df-sup 8924 df-oi 8992 df-card 9386 df-pnf 10700 df-mnf 10701 df-xr 10702 df-ltxr 10703 df-le 10704 df-sub 10895 df-neg 10896 df-nn 11660 df-2 11722 df-3 11723 df-4 11724 df-5 11725 df-6 11726 df-7 11727 df-8 11728 df-9 11729 df-n0 11920 df-z 12006 df-dec 12123 df-uz 12268 df-fz 12925 df-fzo 13068 df-seq 13404 df-hash 13726 df-struct 16528 df-ndx 16529 df-slot 16530 df-base 16532 df-sets 16533 df-ress 16534 df-plusg 16621 df-mulr 16622 df-starv 16623 df-sca 16624 df-vsca 16625 df-tset 16627 df-ple 16628 df-ds 16630 df-unif 16631 df-0g 16758 df-gsum 16759 df-mgm 17903 df-sgrp 17952 df-mnd 17963 df-submnd 18008 df-grp 18157 df-minusg 18158 df-subg 18328 df-cntz 18499 df-cmn 18960 df-abl 18961 df-mgp 19293 df-ur 19305 df-ring 19352 df-cring 19353 df-cnfld 20152 df-psr 20656 df-mpl 20658 df-opsr 20660 df-psr1 20889 df-ply1 20891 df-mdeg 24737 df-deg1 24738 |
This theorem is referenced by: ig1peu 24856 ig1pdvds 24861 |
Copyright terms: Public domain | W3C validator |