MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  deg1n0ima Structured version   Visualization version   GIF version

Theorem deg1n0ima 25994
Description: Degree image of a set of polynomials which does not include zero. (Contributed by Stefan O'Rear, 28-Mar-2015.)
Hypotheses
Ref Expression
deg1z.d 𝐷 = (deg1𝑅)
deg1z.p 𝑃 = (Poly1𝑅)
deg1z.z 0 = (0g𝑃)
deg1nn0cl.b 𝐵 = (Base‘𝑃)
Assertion
Ref Expression
deg1n0ima (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0)

Proof of Theorem deg1n0ima
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ Ring)
2 eldifi 4094 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥𝐵)
32adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥𝐵)
4 eldifsni 4754 . . . . 5 (𝑥 ∈ (𝐵 ∖ { 0 }) → 𝑥0 )
54adantl 481 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → 𝑥0 )
6 deg1z.d . . . . 5 𝐷 = (deg1𝑅)
7 deg1z.p . . . . 5 𝑃 = (Poly1𝑅)
8 deg1z.z . . . . 5 0 = (0g𝑃)
9 deg1nn0cl.b . . . . 5 𝐵 = (Base‘𝑃)
106, 7, 8, 9deg1nn0cl 25993 . . . 4 ((𝑅 ∈ Ring ∧ 𝑥𝐵𝑥0 ) → (𝐷𝑥) ∈ ℕ0)
111, 3, 5, 10syl3anc 1373 . . 3 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (𝐵 ∖ { 0 })) → (𝐷𝑥) ∈ ℕ0)
1211ralrimiva 3125 . 2 (𝑅 ∈ Ring → ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷𝑥) ∈ ℕ0)
136, 7, 9deg1xrf 25986 . . . 4 𝐷:𝐵⟶ℝ*
14 ffun 6691 . . . 4 (𝐷:𝐵⟶ℝ* → Fun 𝐷)
1513, 14ax-mp 5 . . 3 Fun 𝐷
16 difss 4099 . . . 4 (𝐵 ∖ { 0 }) ⊆ 𝐵
1713fdmi 6699 . . . 4 dom 𝐷 = 𝐵
1816, 17sseqtrri 3996 . . 3 (𝐵 ∖ { 0 }) ⊆ dom 𝐷
19 funimass4 6925 . . 3 ((Fun 𝐷 ∧ (𝐵 ∖ { 0 }) ⊆ dom 𝐷) → ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷𝑥) ∈ ℕ0))
2015, 18, 19mp2an 692 . 2 ((𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0 ↔ ∀𝑥 ∈ (𝐵 ∖ { 0 })(𝐷𝑥) ∈ ℕ0)
2112, 20sylibr 234 1 (𝑅 ∈ Ring → (𝐷 “ (𝐵 ∖ { 0 })) ⊆ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  wss 3914  {csn 4589  dom cdm 5638  cima 5641  Fun wfun 6505  wf 6507  cfv 6511  *cxr 11207  0cn0 12442  Basecbs 17179  0gc0g 17402  Ringcrg 20142  Poly1cpl1 22061  deg1cdg1 25959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-subg 19055  df-cntz 19249  df-cmn 19712  df-abl 19713  df-mgp 20050  df-ur 20091  df-ring 20144  df-cring 20145  df-cnfld 21265  df-psr 21818  df-mpl 21820  df-opsr 21822  df-psr1 22064  df-ply1 22066  df-mdeg 25960  df-deg1 25961
This theorem is referenced by:  ig1peu  26080  ig1pdvds  26085
  Copyright terms: Public domain W3C validator