| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmm0cl | Structured version Visualization version GIF version | ||
| Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| dsmmcl.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
| dsmmcl.h | ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| dsmmcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| dsmmcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| dsmmcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| dsmm0cl.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| dsmm0cl | ⊢ (𝜑 → 0 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
| 2 | dsmmcl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | dsmmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | dsmmcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | |
| 5 | 1, 2, 3, 4 | prdsmndd 18784 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Mnd) |
| 6 | eqid 2736 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 7 | dsmm0cl.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 8 | 6, 7 | mndidcl 18763 | . . 3 ⊢ (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃)) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝑃)) |
| 10 | 1, 2, 3, 4 | prds0g 18785 | . . . . . . . . . 10 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑃)) |
| 11 | 10, 7 | eqtr4di 2794 | . . . . . . . . 9 ⊢ (𝜑 → (0g ∘ 𝑅) = 0 ) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (0g ∘ 𝑅) = 0 ) |
| 13 | 12 | fveq1d 6907 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = ( 0 ‘𝑎)) |
| 14 | 4 | ffnd 6736 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 15 | fvco2 7005 | . . . . . . . 8 ⊢ ((𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) | |
| 16 | 14, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) |
| 17 | 13, 16 | eqtr3d 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) |
| 18 | nne 2943 | . . . . . 6 ⊢ (¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) | |
| 19 | 17, 18 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
| 20 | 19 | ralrimiva 3145 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
| 21 | rabeq0 4387 | . . . 4 ⊢ ({𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅ ↔ ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) | |
| 22 | 20, 21 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅) |
| 23 | 0fi 9083 | . . 3 ⊢ ∅ ∈ Fin | |
| 24 | 22, 23 | eqeltrdi 2848 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
| 25 | eqid 2736 | . . 3 ⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) | |
| 26 | dsmmcl.h | . . 3 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) | |
| 27 | 1, 25, 6, 26, 2, 14 | dsmmelbas 21760 | . 2 ⊢ (𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 28 | 9, 24, 27 | mpbir2and 713 | 1 ⊢ (𝜑 → 0 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2939 ∀wral 3060 {crab 3435 ∅c0 4332 ∘ ccom 5688 Fn wfn 6555 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 Fincfn 8986 Basecbs 17248 0gc0g 17485 Xscprds 17491 Mndcmnd 18748 ⊕m cdsmm 21752 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-map 8869 df-ixp 8939 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17487 df-prds 17493 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-dsmm 21753 |
| This theorem is referenced by: dsmmsubg 21764 |
| Copyright terms: Public domain | W3C validator |