![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dsmm0cl | Structured version Visualization version GIF version |
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmcl.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmcl.h | ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
dsmmcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
dsmmcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
dsmmcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
dsmm0cl.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
dsmm0cl | ⊢ (𝜑 → 0 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmcl.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
2 | dsmmcl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | dsmmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | dsmmcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | |
5 | 1, 2, 3, 4 | prdsmndd 18796 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Mnd) |
6 | eqid 2735 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | dsmm0cl.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
8 | 6, 7 | mndidcl 18775 | . . 3 ⊢ (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃)) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝑃)) |
10 | 1, 2, 3, 4 | prds0g 18797 | . . . . . . . . . 10 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑃)) |
11 | 10, 7 | eqtr4di 2793 | . . . . . . . . 9 ⊢ (𝜑 → (0g ∘ 𝑅) = 0 ) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (0g ∘ 𝑅) = 0 ) |
13 | 12 | fveq1d 6909 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = ( 0 ‘𝑎)) |
14 | 4 | ffnd 6738 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
15 | fvco2 7006 | . . . . . . . 8 ⊢ ((𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) | |
16 | 14, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) |
17 | 13, 16 | eqtr3d 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) |
18 | nne 2942 | . . . . . 6 ⊢ (¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) | |
19 | 17, 18 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
20 | 19 | ralrimiva 3144 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
21 | rabeq0 4394 | . . . 4 ⊢ ({𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅ ↔ ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) | |
22 | 20, 21 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅) |
23 | 0fi 9081 | . . 3 ⊢ ∅ ∈ Fin | |
24 | 22, 23 | eqeltrdi 2847 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
25 | eqid 2735 | . . 3 ⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) | |
26 | dsmmcl.h | . . 3 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) | |
27 | 1, 25, 6, 26, 2, 14 | dsmmelbas 21777 | . 2 ⊢ (𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
28 | 9, 24, 27 | mpbir2and 713 | 1 ⊢ (𝜑 → 0 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∀wral 3059 {crab 3433 ∅c0 4339 ∘ ccom 5693 Fn wfn 6558 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 Fincfn 8984 Basecbs 17245 0gc0g 17486 Xscprds 17492 Mndcmnd 18760 ⊕m cdsmm 21769 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-er 8744 df-map 8867 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-sup 9480 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-fz 13545 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-hom 17322 df-cco 17323 df-0g 17488 df-prds 17494 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-dsmm 21770 |
This theorem is referenced by: dsmmsubg 21781 |
Copyright terms: Public domain | W3C validator |