Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dsmm0cl | Structured version Visualization version GIF version |
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmcl.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmcl.h | ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
dsmmcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
dsmmcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
dsmmcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
dsmm0cl.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
dsmm0cl | ⊢ (𝜑 → 0 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmcl.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
2 | dsmmcl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | dsmmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | dsmmcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | |
5 | 1, 2, 3, 4 | prdsmndd 18333 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Mnd) |
6 | eqid 2738 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | dsmm0cl.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
8 | 6, 7 | mndidcl 18315 | . . 3 ⊢ (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃)) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝑃)) |
10 | 1, 2, 3, 4 | prds0g 18334 | . . . . . . . . . 10 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑃)) |
11 | 10, 7 | eqtr4di 2797 | . . . . . . . . 9 ⊢ (𝜑 → (0g ∘ 𝑅) = 0 ) |
12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (0g ∘ 𝑅) = 0 ) |
13 | 12 | fveq1d 6758 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = ( 0 ‘𝑎)) |
14 | 4 | ffnd 6585 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
15 | fvco2 6847 | . . . . . . . 8 ⊢ ((𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) | |
16 | 14, 15 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) |
17 | 13, 16 | eqtr3d 2780 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) |
18 | nne 2946 | . . . . . 6 ⊢ (¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) | |
19 | 17, 18 | sylibr 233 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
20 | 19 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
21 | rabeq0 4315 | . . . 4 ⊢ ({𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅ ↔ ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) | |
22 | 20, 21 | sylibr 233 | . . 3 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅) |
23 | 0fin 8916 | . . 3 ⊢ ∅ ∈ Fin | |
24 | 22, 23 | eqeltrdi 2847 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
25 | eqid 2738 | . . 3 ⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) | |
26 | dsmmcl.h | . . 3 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) | |
27 | 1, 25, 6, 26, 2, 14 | dsmmelbas 20856 | . 2 ⊢ (𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
28 | 9, 24, 27 | mpbir2and 709 | 1 ⊢ (𝜑 → 0 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∀wral 3063 {crab 3067 ∅c0 4253 ∘ ccom 5584 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 0gc0g 17067 Xscprds 17073 Mndcmnd 18300 ⊕m cdsmm 20848 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-prds 17075 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-dsmm 20849 |
This theorem is referenced by: dsmmsubg 20860 |
Copyright terms: Public domain | W3C validator |