| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dsmm0cl | Structured version Visualization version GIF version | ||
| Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| dsmmcl.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
| dsmmcl.h | ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
| dsmmcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| dsmmcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| dsmmcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
| dsmm0cl.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| dsmm0cl | ⊢ (𝜑 → 0 ∈ 𝐻) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dsmmcl.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
| 2 | dsmmcl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 3 | dsmmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 4 | dsmmcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | |
| 5 | 1, 2, 3, 4 | prdsmndd 18697 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Mnd) |
| 6 | eqid 2729 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
| 7 | dsmm0cl.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
| 8 | 6, 7 | mndidcl 18676 | . . 3 ⊢ (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃)) |
| 9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝑃)) |
| 10 | 1, 2, 3, 4 | prds0g 18698 | . . . . . . . . . 10 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑃)) |
| 11 | 10, 7 | eqtr4di 2782 | . . . . . . . . 9 ⊢ (𝜑 → (0g ∘ 𝑅) = 0 ) |
| 12 | 11 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (0g ∘ 𝑅) = 0 ) |
| 13 | 12 | fveq1d 6860 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = ( 0 ‘𝑎)) |
| 14 | 4 | ffnd 6689 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 15 | fvco2 6958 | . . . . . . . 8 ⊢ ((𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) | |
| 16 | 14, 15 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) |
| 17 | 13, 16 | eqtr3d 2766 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) |
| 18 | nne 2929 | . . . . . 6 ⊢ (¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) | |
| 19 | 17, 18 | sylibr 234 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
| 20 | 19 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
| 21 | rabeq0 4351 | . . . 4 ⊢ ({𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅ ↔ ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) | |
| 22 | 20, 21 | sylibr 234 | . . 3 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅) |
| 23 | 0fi 9013 | . . 3 ⊢ ∅ ∈ Fin | |
| 24 | 22, 23 | eqeltrdi 2836 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
| 25 | eqid 2729 | . . 3 ⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) | |
| 26 | dsmmcl.h | . . 3 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) | |
| 27 | 1, 25, 6, 26, 2, 14 | dsmmelbas 21648 | . 2 ⊢ (𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
| 28 | 9, 24, 27 | mpbir2and 713 | 1 ⊢ (𝜑 → 0 ∈ 𝐻) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 ∅c0 4296 ∘ ccom 5642 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 Basecbs 17179 0gc0g 17402 Xscprds 17408 Mndcmnd 18661 ⊕m cdsmm 21640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-prds 17410 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-dsmm 21641 |
| This theorem is referenced by: dsmmsubg 21652 |
| Copyright terms: Public domain | W3C validator |