Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dsmm0cl | Structured version Visualization version GIF version |
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.) |
Ref | Expression |
---|---|
dsmmcl.p | ⊢ 𝑃 = (𝑆Xs𝑅) |
dsmmcl.h | ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) |
dsmmcl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
dsmmcl.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
dsmmcl.r | ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) |
dsmm0cl.z | ⊢ 0 = (0g‘𝑃) |
Ref | Expression |
---|---|
dsmm0cl | ⊢ (𝜑 → 0 ∈ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dsmmcl.p | . . . 4 ⊢ 𝑃 = (𝑆Xs𝑅) | |
2 | dsmmcl.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
3 | dsmmcl.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
4 | dsmmcl.r | . . . 4 ⊢ (𝜑 → 𝑅:𝐼⟶Mnd) | |
5 | 1, 2, 3, 4 | prdsmndd 18010 | . . 3 ⊢ (𝜑 → 𝑃 ∈ Mnd) |
6 | eqid 2758 | . . . 4 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
7 | dsmm0cl.z | . . . 4 ⊢ 0 = (0g‘𝑃) | |
8 | 6, 7 | mndidcl 17992 | . . 3 ⊢ (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃)) |
9 | 5, 8 | syl 17 | . 2 ⊢ (𝜑 → 0 ∈ (Base‘𝑃)) |
10 | 1, 2, 3, 4 | prds0g 18011 | . . . . . . . . . 10 ⊢ (𝜑 → (0g ∘ 𝑅) = (0g‘𝑃)) |
11 | 10, 7 | eqtr4di 2811 | . . . . . . . . 9 ⊢ (𝜑 → (0g ∘ 𝑅) = 0 ) |
12 | 11 | adantr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → (0g ∘ 𝑅) = 0 ) |
13 | 12 | fveq1d 6660 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = ( 0 ‘𝑎)) |
14 | 4 | ffnd 6499 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 Fn 𝐼) |
15 | fvco2 6749 | . . . . . . . 8 ⊢ ((𝑅 Fn 𝐼 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) | |
16 | 14, 15 | sylan 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ((0g ∘ 𝑅)‘𝑎) = (0g‘(𝑅‘𝑎))) |
17 | 13, 16 | eqtr3d 2795 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) |
18 | nne 2955 | . . . . . 6 ⊢ (¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎)) ↔ ( 0 ‘𝑎) = (0g‘(𝑅‘𝑎))) | |
19 | 17, 18 | sylibr 237 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝐼) → ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
20 | 19 | ralrimiva 3113 | . . . 4 ⊢ (𝜑 → ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) |
21 | rabeq0 4280 | . . . 4 ⊢ ({𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅ ↔ ∀𝑎 ∈ 𝐼 ¬ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))) | |
22 | 20, 21 | sylibr 237 | . . 3 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} = ∅) |
23 | 0fin 8740 | . . 3 ⊢ ∅ ∈ Fin | |
24 | 22, 23 | eqeltrdi 2860 | . 2 ⊢ (𝜑 → {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin) |
25 | eqid 2758 | . . 3 ⊢ (𝑆 ⊕m 𝑅) = (𝑆 ⊕m 𝑅) | |
26 | dsmmcl.h | . . 3 ⊢ 𝐻 = (Base‘(𝑆 ⊕m 𝑅)) | |
27 | 1, 25, 6, 26, 2, 14 | dsmmelbas 20504 | . 2 ⊢ (𝜑 → ( 0 ∈ 𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎 ∈ 𝐼 ∣ ( 0 ‘𝑎) ≠ (0g‘(𝑅‘𝑎))} ∈ Fin))) |
28 | 9, 24, 27 | mpbir2and 712 | 1 ⊢ (𝜑 → 0 ∈ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∀wral 3070 {crab 3074 ∅c0 4225 ∘ ccom 5528 Fn wfn 6330 ⟶wf 6331 ‘cfv 6335 (class class class)co 7150 Fincfn 8527 Basecbs 16541 0gc0g 16771 Xscprds 16777 Mndcmnd 17977 ⊕m cdsmm 20496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-map 8418 df-ixp 8480 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-sca 16639 df-vsca 16640 df-ip 16641 df-tset 16642 df-ple 16643 df-ds 16645 df-hom 16647 df-cco 16648 df-0g 16773 df-prds 16779 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-dsmm 20497 |
This theorem is referenced by: dsmmsubg 20508 |
Copyright terms: Public domain | W3C validator |