MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmm0cl Structured version   Visualization version   GIF version

Theorem dsmm0cl 21778
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmm0cl.z 0 = (0g𝑃)
Assertion
Ref Expression
dsmm0cl (𝜑0𝐻)

Proof of Theorem dsmm0cl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 dsmmcl.i . . . 4 (𝜑𝐼𝑊)
3 dsmmcl.s . . . 4 (𝜑𝑆𝑉)
4 dsmmcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 18796 . . 3 (𝜑𝑃 ∈ Mnd)
6 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
7 dsmm0cl.z . . . 4 0 = (0g𝑃)
86, 7mndidcl 18775 . . 3 (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃))
95, 8syl 17 . 2 (𝜑0 ∈ (Base‘𝑃))
101, 2, 3, 4prds0g 18797 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝑃))
1110, 7eqtr4di 2793 . . . . . . . . 9 (𝜑 → (0g𝑅) = 0 )
1211adantr 480 . . . . . . . 8 ((𝜑𝑎𝐼) → (0g𝑅) = 0 )
1312fveq1d 6909 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = ( 0𝑎))
144ffnd 6738 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
15 fvco2 7006 . . . . . . . 8 ((𝑅 Fn 𝐼𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1614, 15sylan 580 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1713, 16eqtr3d 2777 . . . . . 6 ((𝜑𝑎𝐼) → ( 0𝑎) = (0g‘(𝑅𝑎)))
18 nne 2942 . . . . . 6 (¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ( 0𝑎) = (0g‘(𝑅𝑎)))
1917, 18sylibr 234 . . . . 5 ((𝜑𝑎𝐼) → ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2019ralrimiva 3144 . . . 4 (𝜑 → ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
21 rabeq0 4394 . . . 4 ({𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅ ↔ ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2220, 21sylibr 234 . . 3 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅)
23 0fi 9081 . . 3 ∅ ∈ Fin
2422, 23eqeltrdi 2847 . 2 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
25 eqid 2735 . . 3 (𝑆m 𝑅) = (𝑆m 𝑅)
26 dsmmcl.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
271, 25, 6, 26, 2, 14dsmmelbas 21777 . 2 (𝜑 → ( 0𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
289, 24, 27mpbir2and 713 1 (𝜑0𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  {crab 3433  c0 4339  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  0gc0g 17486  Xscprds 17492  Mndcmnd 18760  m cdsmm 21769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-prds 17494  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-dsmm 21770
This theorem is referenced by:  dsmmsubg  21781
  Copyright terms: Public domain W3C validator