MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dsmm0cl Structured version   Visualization version   GIF version

Theorem dsmm0cl 21686
Description: The all-zero vector is contained in the finite hull, since its support is empty and therefore finite. This theorem along with the next one effectively proves that the finite hull is a "submonoid", although that does not exist as a defined concept yet. (Contributed by Stefan O'Rear, 11-Jan-2015.)
Hypotheses
Ref Expression
dsmmcl.p 𝑃 = (𝑆Xs𝑅)
dsmmcl.h 𝐻 = (Base‘(𝑆m 𝑅))
dsmmcl.i (𝜑𝐼𝑊)
dsmmcl.s (𝜑𝑆𝑉)
dsmmcl.r (𝜑𝑅:𝐼⟶Mnd)
dsmm0cl.z 0 = (0g𝑃)
Assertion
Ref Expression
dsmm0cl (𝜑0𝐻)

Proof of Theorem dsmm0cl
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dsmmcl.p . . . 4 𝑃 = (𝑆Xs𝑅)
2 dsmmcl.i . . . 4 (𝜑𝐼𝑊)
3 dsmmcl.s . . . 4 (𝜑𝑆𝑉)
4 dsmmcl.r . . . 4 (𝜑𝑅:𝐼⟶Mnd)
51, 2, 3, 4prdsmndd 18686 . . 3 (𝜑𝑃 ∈ Mnd)
6 eqid 2733 . . . 4 (Base‘𝑃) = (Base‘𝑃)
7 dsmm0cl.z . . . 4 0 = (0g𝑃)
86, 7mndidcl 18665 . . 3 (𝑃 ∈ Mnd → 0 ∈ (Base‘𝑃))
95, 8syl 17 . 2 (𝜑0 ∈ (Base‘𝑃))
101, 2, 3, 4prds0g 18687 . . . . . . . . . 10 (𝜑 → (0g𝑅) = (0g𝑃))
1110, 7eqtr4di 2786 . . . . . . . . 9 (𝜑 → (0g𝑅) = 0 )
1211adantr 480 . . . . . . . 8 ((𝜑𝑎𝐼) → (0g𝑅) = 0 )
1312fveq1d 6833 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = ( 0𝑎))
144ffnd 6660 . . . . . . . 8 (𝜑𝑅 Fn 𝐼)
15 fvco2 6928 . . . . . . . 8 ((𝑅 Fn 𝐼𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1614, 15sylan 580 . . . . . . 7 ((𝜑𝑎𝐼) → ((0g𝑅)‘𝑎) = (0g‘(𝑅𝑎)))
1713, 16eqtr3d 2770 . . . . . 6 ((𝜑𝑎𝐼) → ( 0𝑎) = (0g‘(𝑅𝑎)))
18 nne 2933 . . . . . 6 (¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)) ↔ ( 0𝑎) = (0g‘(𝑅𝑎)))
1917, 18sylibr 234 . . . . 5 ((𝜑𝑎𝐼) → ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2019ralrimiva 3125 . . . 4 (𝜑 → ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
21 rabeq0 4337 . . . 4 ({𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅ ↔ ∀𝑎𝐼 ¬ ( 0𝑎) ≠ (0g‘(𝑅𝑎)))
2220, 21sylibr 234 . . 3 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} = ∅)
23 0fi 8975 . . 3 ∅ ∈ Fin
2422, 23eqeltrdi 2841 . 2 (𝜑 → {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)
25 eqid 2733 . . 3 (𝑆m 𝑅) = (𝑆m 𝑅)
26 dsmmcl.h . . 3 𝐻 = (Base‘(𝑆m 𝑅))
271, 25, 6, 26, 2, 14dsmmelbas 21685 . 2 (𝜑 → ( 0𝐻 ↔ ( 0 ∈ (Base‘𝑃) ∧ {𝑎𝐼 ∣ ( 0𝑎) ≠ (0g‘(𝑅𝑎))} ∈ Fin)))
289, 24, 27mpbir2and 713 1 (𝜑0𝐻)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  {crab 3396  c0 4282  ccom 5625   Fn wfn 6484  wf 6485  cfv 6489  (class class class)co 7355  Fincfn 8879  Basecbs 17127  0gc0g 17350  Xscprds 17356  Mndcmnd 18650  m cdsmm 21677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-er 8631  df-map 8761  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-9 12206  df-n0 12393  df-z 12480  df-dec 12599  df-uz 12743  df-fz 13415  df-struct 17065  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-tset 17187  df-ple 17188  df-ds 17190  df-hom 17192  df-cco 17193  df-0g 17352  df-prds 17358  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-dsmm 21678
This theorem is referenced by:  dsmmsubg  21689
  Copyright terms: Public domain W3C validator