MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem1 Structured version   Visualization version   GIF version

Theorem cayleylem1 18529
Description: Lemma for cayley 18531. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem1 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleylem1.x . . 3 𝑋 = (Base‘𝐺)
2 cayleylem1.p . . 3 + = (+g𝐺)
3 eqid 2824 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))
41, 2, 3gaid2 18422 . 2 (𝐺 ∈ Grp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋))
5 cayleylem1.h . . 3 𝐻 = (SymGrp‘𝑋)
6 cayleylem1.f . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
7 oveq12 7147 . . . . . . 7 ((𝑥 = 𝑔𝑦 = 𝑎) → (𝑥 + 𝑦) = (𝑔 + 𝑎))
8 ovex 7171 . . . . . . 7 (𝑔 + 𝑎) ∈ V
97, 3, 8ovmpoa 7287 . . . . . 6 ((𝑔𝑋𝑎𝑋) → (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎) = (𝑔 + 𝑎))
109mpteq2dva 5142 . . . . 5 (𝑔𝑋 → (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎)) = (𝑎𝑋 ↦ (𝑔 + 𝑎)))
1110mpteq2ia 5138 . . . 4 (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎))) = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
126, 11eqtr4i 2850 . . 3 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎)))
131, 5, 12galactghm 18521 . 2 ((𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
144, 13syl 17 1 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cmpt 5127  cfv 6336  (class class class)co 7138  cmpo 7140  Basecbs 16472  +gcplusg 16554  0gc0g 16702  Grpcgrp 18092   GrpHom cghm 18344   GrpAct cga 18408  SymGrpcsymg 18484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-nn 11624  df-2 11686  df-3 11687  df-4 11688  df-5 11689  df-6 11690  df-7 11691  df-8 11692  df-9 11693  df-n0 11884  df-z 11968  df-uz 12230  df-fz 12884  df-struct 16474  df-ndx 16475  df-slot 16476  df-base 16478  df-sets 16479  df-ress 16480  df-plusg 16567  df-tset 16573  df-0g 16704  df-mgm 17841  df-sgrp 17890  df-mnd 17901  df-efmnd 18023  df-grp 18095  df-minusg 18096  df-subg 18265  df-ghm 18345  df-ga 18409  df-symg 18485
This theorem is referenced by:  cayleylem2  18530  cayley  18531
  Copyright terms: Public domain W3C validator