Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cayleylem1 | Structured version Visualization version GIF version |
Description: Lemma for cayley 18653. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
cayleylem1.x | ⊢ 𝑋 = (Base‘𝐺) |
cayleylem1.p | ⊢ + = (+g‘𝐺) |
cayleylem1.u | ⊢ 0 = (0g‘𝐺) |
cayleylem1.h | ⊢ 𝐻 = (SymGrp‘𝑋) |
cayleylem1.s | ⊢ 𝑆 = (Base‘𝐻) |
cayleylem1.f | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
Ref | Expression |
---|---|
cayleylem1 | ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cayleylem1.x | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
2 | cayleylem1.p | . . 3 ⊢ + = (+g‘𝐺) | |
3 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) | |
4 | 1, 2, 3 | gaid2 18544 | . 2 ⊢ (𝐺 ∈ Grp → (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋)) |
5 | cayleylem1.h | . . 3 ⊢ 𝐻 = (SymGrp‘𝑋) | |
6 | cayleylem1.f | . . . 4 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
7 | oveq12 7173 | . . . . . . 7 ⊢ ((𝑥 = 𝑔 ∧ 𝑦 = 𝑎) → (𝑥 + 𝑦) = (𝑔 + 𝑎)) | |
8 | ovex 7197 | . . . . . . 7 ⊢ (𝑔 + 𝑎) ∈ V | |
9 | 7, 3, 8 | ovmpoa 7314 | . . . . . 6 ⊢ ((𝑔 ∈ 𝑋 ∧ 𝑎 ∈ 𝑋) → (𝑔(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦))𝑎) = (𝑔 + 𝑎)) |
10 | 9 | mpteq2dva 5122 | . . . . 5 ⊢ (𝑔 ∈ 𝑋 → (𝑎 ∈ 𝑋 ↦ (𝑔(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦))𝑎)) = (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
11 | 10 | mpteq2ia 5118 | . . . 4 ⊢ (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦))𝑎))) = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
12 | 6, 11 | eqtr4i 2764 | . . 3 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔(𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦))𝑎))) |
13 | 1, 5, 12 | galactghm 18643 | . 2 ⊢ ((𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
14 | 4, 13 | syl 17 | 1 ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ↦ cmpt 5107 ‘cfv 6333 (class class class)co 7164 ∈ cmpo 7166 Basecbs 16579 +gcplusg 16661 0gc0g 16809 Grpcgrp 18212 GrpHom cghm 18466 GrpAct cga 18530 SymGrpcsymg 18606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-rep 5151 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-1st 7707 df-2nd 7708 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-1o 8124 df-er 8313 df-map 8432 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-2 11772 df-3 11773 df-4 11774 df-5 11775 df-6 11776 df-7 11777 df-8 11778 df-9 11779 df-n0 11970 df-z 12056 df-uz 12318 df-fz 12975 df-struct 16581 df-ndx 16582 df-slot 16583 df-base 16585 df-sets 16586 df-ress 16587 df-plusg 16674 df-tset 16680 df-0g 16811 df-mgm 17961 df-sgrp 18010 df-mnd 18021 df-efmnd 18143 df-grp 18215 df-minusg 18216 df-subg 18387 df-ghm 18467 df-ga 18531 df-symg 18607 |
This theorem is referenced by: cayleylem2 18652 cayley 18653 |
Copyright terms: Public domain | W3C validator |