MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cayleylem1 Structured version   Visualization version   GIF version

Theorem cayleylem1 19324
Description: Lemma for cayley 19326. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
cayleylem1.x 𝑋 = (Base‘𝐺)
cayleylem1.p + = (+g𝐺)
cayleylem1.u 0 = (0g𝐺)
cayleylem1.h 𝐻 = (SymGrp‘𝑋)
cayleylem1.s 𝑆 = (Base‘𝐻)
cayleylem1.f 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
Assertion
Ref Expression
cayleylem1 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑔,𝑎, +   𝐺,𝑎,𝑔   𝑔,𝐻   𝑋,𝑎,𝑔   0 ,𝑎
Allowed substitution hints:   𝑆(𝑔,𝑎)   𝐹(𝑔,𝑎)   𝐻(𝑎)   0 (𝑔)

Proof of Theorem cayleylem1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cayleylem1.x . . 3 𝑋 = (Base‘𝐺)
2 cayleylem1.p . . 3 + = (+g𝐺)
3 eqid 2731 . . 3 (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) = (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))
41, 2, 3gaid2 19215 . 2 (𝐺 ∈ Grp → (𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋))
5 cayleylem1.h . . 3 𝐻 = (SymGrp‘𝑋)
6 cayleylem1.f . . . 4 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
7 oveq12 7355 . . . . . . 7 ((𝑥 = 𝑔𝑦 = 𝑎) → (𝑥 + 𝑦) = (𝑔 + 𝑎))
8 ovex 7379 . . . . . . 7 (𝑔 + 𝑎) ∈ V
97, 3, 8ovmpoa 7501 . . . . . 6 ((𝑔𝑋𝑎𝑋) → (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎) = (𝑔 + 𝑎))
109mpteq2dva 5182 . . . . 5 (𝑔𝑋 → (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎)) = (𝑎𝑋 ↦ (𝑔 + 𝑎)))
1110mpteq2ia 5184 . . . 4 (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎))) = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
126, 11eqtr4i 2757 . . 3 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔(𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦))𝑎)))
131, 5, 12galactghm 19316 . 2 ((𝑥𝑋, 𝑦𝑋 ↦ (𝑥 + 𝑦)) ∈ (𝐺 GrpAct 𝑋) → 𝐹 ∈ (𝐺 GrpHom 𝐻))
144, 13syl 17 1 (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cmpt 5170  cfv 6481  (class class class)co 7346  cmpo 7348  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18846   GrpHom cghm 19124   GrpAct cga 19201  SymGrpcsymg 19281
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-tset 17180  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-subg 19036  df-ghm 19125  df-ga 19202  df-symg 19282
This theorem is referenced by:  cayleylem2  19325  cayley  19326
  Copyright terms: Public domain W3C validator