Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  glbprdm Structured version   Visualization version   GIF version

Theorem glbprdm 49093
Description: The set of two comparable elements in a poset has GLB. (Contributed by Zhi Wang, 26-Sep-2024.)
Hypotheses
Ref Expression
lubpr.k (𝜑𝐾 ∈ Poset)
lubpr.b 𝐵 = (Base‘𝐾)
lubpr.x (𝜑𝑋𝐵)
lubpr.y (𝜑𝑌𝐵)
lubpr.l = (le‘𝐾)
lubpr.c (𝜑𝑋 𝑌)
lubpr.s (𝜑𝑆 = {𝑋, 𝑌})
glbpr.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
glbprdm (𝜑𝑆 ∈ dom 𝐺)

Proof of Theorem glbprdm
StepHypRef Expression
1 lubpr.k . . 3 (𝜑𝐾 ∈ Poset)
2 lubpr.b . . 3 𝐵 = (Base‘𝐾)
3 lubpr.x . . 3 (𝜑𝑋𝐵)
4 lubpr.y . . 3 (𝜑𝑌𝐵)
5 lubpr.l . . 3 = (le‘𝐾)
6 lubpr.c . . 3 (𝜑𝑋 𝑌)
7 lubpr.s . . 3 (𝜑𝑆 = {𝑋, 𝑌})
8 glbpr.g . . 3 𝐺 = (glb‘𝐾)
91, 2, 3, 4, 5, 6, 7, 8glbprlem 49092 . 2 (𝜑 → (𝑆 ∈ dom 𝐺 ∧ (𝐺𝑆) = 𝑋))
109simpld 494 1 (𝜑𝑆 ∈ dom 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {cpr 4579   class class class wbr 5095  dom cdm 5621  cfv 6488  Basecbs 17124  lecple 17172  Posetcpo 18217  glbcglb 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-dec 12597  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ple 17185  df-odu 18197  df-proset 18204  df-poset 18223  df-lub 18254  df-glb 18255
This theorem is referenced by:  toslat  49109
  Copyright terms: Public domain W3C validator