MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnnn0genn0 Structured version   Visualization version   GIF version

Theorem hashnnn0genn0 13706
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
hashnnn0genn0 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))

Proof of Theorem hashnnn0genn0
StepHypRef Expression
1 df-nel 3126 . . . 4 ((♯‘𝑀) ∉ ℕ0 ↔ ¬ (♯‘𝑀) ∈ ℕ0)
2 pm2.21 123 . . . 4 (¬ (♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
31, 2sylbi 219 . . 3 ((♯‘𝑀) ∉ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
433ad2ant2 1130 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
5 nn0re 11909 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65ltpnfd 12519 . . . . 5 (𝑁 ∈ ℕ0𝑁 < +∞)
75rexrd 10693 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
8 pnfxr 10697 . . . . . 6 +∞ ∈ ℝ*
9 xrltle 12545 . . . . . 6 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑁 < +∞ → 𝑁 ≤ +∞))
107, 8, 9sylancl 588 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < +∞ → 𝑁 ≤ +∞))
116, 10mpd 15 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ +∞)
12 breq2 5072 . . . 4 ((♯‘𝑀) = +∞ → (𝑁 ≤ (♯‘𝑀) ↔ 𝑁 ≤ +∞))
1311, 12syl5ibrcom 249 . . 3 (𝑁 ∈ ℕ0 → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
14133ad2ant3 1131 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
15 hashnn0pnf 13705 . . 3 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
16153ad2ant1 1129 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
174, 14, 16mpjaod 856 1 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 843  w3a 1083   = wceq 1537  wcel 2114  wnel 3125   class class class wbr 5068  cfv 6357  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678  0cn0 11900  chash 13693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-hash 13694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator