MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnnn0genn0 Structured version   Visualization version   GIF version

Theorem hashnnn0genn0 14329
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
hashnnn0genn0 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))

Proof of Theorem hashnnn0genn0
StepHypRef Expression
1 df-nel 3037 . . . 4 ((♯‘𝑀) ∉ ℕ0 ↔ ¬ (♯‘𝑀) ∈ ℕ0)
2 pm2.21 123 . . . 4 (¬ (♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
31, 2sylbi 216 . . 3 ((♯‘𝑀) ∉ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
433ad2ant2 1131 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
5 nn0re 12506 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65ltpnfd 13128 . . . . 5 (𝑁 ∈ ℕ0𝑁 < +∞)
75rexrd 11289 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
8 pnfxr 11293 . . . . . 6 +∞ ∈ ℝ*
9 xrltle 13155 . . . . . 6 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑁 < +∞ → 𝑁 ≤ +∞))
107, 8, 9sylancl 584 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < +∞ → 𝑁 ≤ +∞))
116, 10mpd 15 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ +∞)
12 breq2 5148 . . . 4 ((♯‘𝑀) = +∞ → (𝑁 ≤ (♯‘𝑀) ↔ 𝑁 ≤ +∞))
1311, 12syl5ibrcom 246 . . 3 (𝑁 ∈ ℕ0 → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
14133ad2ant3 1132 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
15 hashnn0pnf 14328 . . 3 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
16153ad2ant1 1130 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
174, 14, 16mpjaod 858 1 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845  w3a 1084   = wceq 1533  wcel 2098  wnel 3036   class class class wbr 5144  cfv 6543  +∞cpnf 11270  *cxr 11272   < clt 11273  cle 11274  0cn0 12497  chash 14316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735  ax-cnex 11189  ax-resscn 11190  ax-1cn 11191  ax-icn 11192  ax-addcl 11193  ax-addrcl 11194  ax-mulcl 11195  ax-mulrcl 11196  ax-mulcom 11197  ax-addass 11198  ax-mulass 11199  ax-distr 11200  ax-i2m1 11201  ax-1ne0 11202  ax-1rid 11203  ax-rnegex 11204  ax-rrecex 11205  ax-cnre 11206  ax-pre-lttri 11207  ax-pre-lttrn 11208  ax-pre-ltadd 11209  ax-pre-mulgt0 11210
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3961  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-int 4946  df-iun 4994  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-card 9957  df-pnf 11275  df-mnf 11276  df-xr 11277  df-ltxr 11278  df-le 11279  df-sub 11471  df-neg 11472  df-nn 12238  df-n0 12498  df-xnn0 12570  df-z 12584  df-uz 12848  df-hash 14317
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator