MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnnn0genn0 Structured version   Visualization version   GIF version

Theorem hashnnn0genn0 14302
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
hashnnn0genn0 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))

Proof of Theorem hashnnn0genn0
StepHypRef Expression
1 df-nel 3047 . . . 4 ((♯‘𝑀) ∉ ℕ0 ↔ ¬ (♯‘𝑀) ∈ ℕ0)
2 pm2.21 123 . . . 4 (¬ (♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
31, 2sylbi 216 . . 3 ((♯‘𝑀) ∉ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
433ad2ant2 1134 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
5 nn0re 12480 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65ltpnfd 13100 . . . . 5 (𝑁 ∈ ℕ0𝑁 < +∞)
75rexrd 11263 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
8 pnfxr 11267 . . . . . 6 +∞ ∈ ℝ*
9 xrltle 13127 . . . . . 6 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑁 < +∞ → 𝑁 ≤ +∞))
107, 8, 9sylancl 586 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < +∞ → 𝑁 ≤ +∞))
116, 10mpd 15 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ +∞)
12 breq2 5152 . . . 4 ((♯‘𝑀) = +∞ → (𝑁 ≤ (♯‘𝑀) ↔ 𝑁 ≤ +∞))
1311, 12syl5ibrcom 246 . . 3 (𝑁 ∈ ℕ0 → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
14133ad2ant3 1135 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
15 hashnn0pnf 14301 . . 3 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
16153ad2ant1 1133 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
174, 14, 16mpjaod 858 1 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 845  w3a 1087   = wceq 1541  wcel 2106  wnel 3046   class class class wbr 5148  cfv 6543  +∞cpnf 11244  *cxr 11246   < clt 11247  cle 11248  0cn0 12471  chash 14289
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-hash 14290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator