Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hashnnn0genn0 | Structured version Visualization version GIF version |
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
hashnnn0genn0 | ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nel 3039 | . . . 4 ⊢ ((♯‘𝑀) ∉ ℕ0 ↔ ¬ (♯‘𝑀) ∈ ℕ0) | |
2 | pm2.21 123 | . . . 4 ⊢ (¬ (♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) ∈ ℕ0 → 𝑁 ≤ (♯‘𝑀))) | |
3 | 1, 2 | sylbi 220 | . . 3 ⊢ ((♯‘𝑀) ∉ ℕ0 → ((♯‘𝑀) ∈ ℕ0 → 𝑁 ≤ (♯‘𝑀))) |
4 | 3 | 3ad2ant2 1135 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 → 𝑁 ≤ (♯‘𝑀))) |
5 | nn0re 11978 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
6 | 5 | ltpnfd 12592 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 𝑁 < +∞) |
7 | 5 | rexrd 10762 | . . . . . 6 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ*) |
8 | pnfxr 10766 | . . . . . 6 ⊢ +∞ ∈ ℝ* | |
9 | xrltle 12618 | . . . . . 6 ⊢ ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑁 < +∞ → 𝑁 ≤ +∞)) | |
10 | 7, 8, 9 | sylancl 589 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝑁 < +∞ → 𝑁 ≤ +∞)) |
11 | 6, 10 | mpd 15 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ +∞) |
12 | breq2 5031 | . . . 4 ⊢ ((♯‘𝑀) = +∞ → (𝑁 ≤ (♯‘𝑀) ↔ 𝑁 ≤ +∞)) | |
13 | 11, 12 | syl5ibrcom 250 | . . 3 ⊢ (𝑁 ∈ ℕ0 → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀))) |
14 | 13 | 3ad2ant3 1136 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀))) |
15 | hashnn0pnf 13787 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) | |
16 | 15 | 3ad2ant1 1134 | . 2 ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) |
17 | 4, 14, 16 | mpjaod 859 | 1 ⊢ ((𝑀 ∈ 𝑉 ∧ (♯‘𝑀) ∉ ℕ0 ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 ∧ w3a 1088 = wceq 1542 ∈ wcel 2113 ∉ wnel 3038 class class class wbr 5027 ‘cfv 6333 +∞cpnf 10743 ℝ*cxr 10745 < clt 10746 ≤ cle 10747 ℕ0cn0 11969 ♯chash 13775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 ax-cnex 10664 ax-resscn 10665 ax-1cn 10666 ax-icn 10667 ax-addcl 10668 ax-addrcl 10669 ax-mulcl 10670 ax-mulrcl 10671 ax-mulcom 10672 ax-addass 10673 ax-mulass 10674 ax-distr 10675 ax-i2m1 10676 ax-1ne0 10677 ax-1rid 10678 ax-rnegex 10679 ax-rrecex 10680 ax-cnre 10681 ax-pre-lttri 10682 ax-pre-lttrn 10683 ax-pre-ltadd 10684 ax-pre-mulgt0 10685 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-pss 3860 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-tp 4518 df-op 4520 df-uni 4794 df-int 4834 df-iun 4880 df-br 5028 df-opab 5090 df-mpt 5108 df-tr 5134 df-id 5425 df-eprel 5430 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-rn 5530 df-res 5531 df-ima 5532 df-pred 6123 df-ord 6169 df-on 6170 df-lim 6171 df-suc 6172 df-iota 6291 df-fun 6335 df-fn 6336 df-f 6337 df-f1 6338 df-fo 6339 df-f1o 6340 df-fv 6341 df-riota 7121 df-ov 7167 df-oprab 7168 df-mpo 7169 df-om 7594 df-wrecs 7969 df-recs 8030 df-rdg 8068 df-er 8313 df-en 8549 df-dom 8550 df-sdom 8551 df-fin 8552 df-card 9434 df-pnf 10748 df-mnf 10749 df-xr 10750 df-ltxr 10751 df-le 10752 df-sub 10943 df-neg 10944 df-nn 11710 df-n0 11970 df-xnn0 12042 df-z 12056 df-uz 12318 df-hash 13776 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |