MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnnn0genn0 Structured version   Visualization version   GIF version

Theorem hashnnn0genn0 14318
Description: If the size of a set is not a nonnegative integer, it is greater than or equal to any nonnegative integer. (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
hashnnn0genn0 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))

Proof of Theorem hashnnn0genn0
StepHypRef Expression
1 df-nel 3032 . . . 4 ((♯‘𝑀) ∉ ℕ0 ↔ ¬ (♯‘𝑀) ∈ ℕ0)
2 pm2.21 123 . . . 4 (¬ (♯‘𝑀) ∈ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
31, 2sylbi 217 . . 3 ((♯‘𝑀) ∉ ℕ0 → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
433ad2ant2 1134 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0𝑁 ≤ (♯‘𝑀)))
5 nn0re 12467 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
65ltpnfd 13094 . . . . 5 (𝑁 ∈ ℕ0𝑁 < +∞)
75rexrd 11242 . . . . . 6 (𝑁 ∈ ℕ0𝑁 ∈ ℝ*)
8 pnfxr 11246 . . . . . 6 +∞ ∈ ℝ*
9 xrltle 13122 . . . . . 6 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑁 < +∞ → 𝑁 ≤ +∞))
107, 8, 9sylancl 586 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 < +∞ → 𝑁 ≤ +∞))
116, 10mpd 15 . . . 4 (𝑁 ∈ ℕ0𝑁 ≤ +∞)
12 breq2 5119 . . . 4 ((♯‘𝑀) = +∞ → (𝑁 ≤ (♯‘𝑀) ↔ 𝑁 ≤ +∞))
1311, 12syl5ibrcom 247 . . 3 (𝑁 ∈ ℕ0 → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
14133ad2ant3 1135 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) = +∞ → 𝑁 ≤ (♯‘𝑀)))
15 hashnn0pnf 14317 . . 3 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
16153ad2ant1 1133 . 2 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
174, 14, 16mpjaod 860 1 ((𝑀𝑉 ∧ (♯‘𝑀) ∉ ℕ0𝑁 ∈ ℕ0) → 𝑁 ≤ (♯‘𝑀))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847  w3a 1086   = wceq 1540  wcel 2109  wnel 3031   class class class wbr 5115  cfv 6519  +∞cpnf 11223  *cxr 11225   < clt 11226  cle 11227  0cn0 12458  chash 14305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-card 9910  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-n0 12459  df-xnn0 12532  df-z 12546  df-uz 12810  df-hash 14306
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator