![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaplem3 | Structured version Visualization version GIF version |
Description: Lemma to convert a frequently-used union condition. TODO: see if this can be applied to other hdmap* theorems. (Contributed by NM, 17-May-2015.) |
Ref | Expression |
---|---|
hdmaplem1.v | ⊢ 𝑉 = (Base‘𝑊) |
hdmaplem1.n | ⊢ 𝑁 = (LSpan‘𝑊) |
hdmaplem1.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
hdmaplem1.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
hdmaplem1.j | ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) |
hdmaplem1.y | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
hdmaplem3.o | ⊢ 0 = (0g‘𝑊) |
Ref | Expression |
---|---|
hdmaplem3 | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaplem3.o | . 2 ⊢ 0 = (0g‘𝑊) | |
2 | eqid 2825 | . 2 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
3 | hdmaplem1.w | . 2 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
4 | hdmaplem1.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
5 | hdmaplem1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
6 | hdmaplem1.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
7 | 5, 2, 6 | lspsncl 19343 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑌 ∈ 𝑉) → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
8 | 3, 4, 7 | syl2anc 579 | . 2 ⊢ (𝜑 → (𝑁‘{𝑌}) ∈ (LSubSp‘𝑊)) |
9 | hdmaplem1.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
10 | hdmaplem1.j | . . 3 ⊢ (𝜑 → ¬ 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) | |
11 | elun2 4010 | . . 3 ⊢ (𝑍 ∈ (𝑁‘{𝑌}) → 𝑍 ∈ ((𝑁‘{𝑋}) ∪ (𝑁‘{𝑌}))) | |
12 | 10, 11 | nsyl 138 | . 2 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌})) |
13 | 1, 2, 3, 8, 9, 12 | lssneln0 19316 | 1 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1656 ∈ wcel 2164 ∖ cdif 3795 ∪ cun 3796 {csn 4399 ‘cfv 6127 Basecbs 16229 0gc0g 16460 LModclmod 19226 LSubSpclss 19295 LSpanclspn 19337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-plusg 16325 df-0g 16462 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-grp 17786 df-minusg 17787 df-sbg 17788 df-mgp 18851 df-ur 18863 df-ring 18910 df-lmod 19228 df-lss 19296 df-lsp 19338 |
This theorem is referenced by: hdmapeveclem 37904 |
Copyright terms: Public domain | W3C validator |