Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version |
Description: The span of a singleton is a subspace (frequently used special case of lspcl 20013). (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4721 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspcl 20013 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
6 | 1, 5 | sylan2 596 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ⊆ wss 3866 {csn 4541 ‘cfv 6380 Basecbs 16760 LModclmod 19899 LSubSpclss 19968 LSpanclspn 20008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-sets 16717 df-slot 16735 df-ndx 16745 df-base 16761 df-plusg 16815 df-0g 16946 df-mgm 18114 df-sgrp 18163 df-mnd 18174 df-grp 18368 df-minusg 18369 df-sbg 18370 df-mgp 19505 df-ur 19517 df-ring 19564 df-lmod 19901 df-lss 19969 df-lsp 20009 |
This theorem is referenced by: lspsnsubg 20017 lspsneli 20038 lspsn 20039 lspsnss2 20042 lsmelval2 20122 lsmpr 20126 lsppr 20130 lspprabs 20132 lspsncmp 20153 lspsnne1 20154 lspsnne2 20155 lspabs3 20158 lspsneq 20159 lspdisj 20162 lspdisj2 20164 lspfixed 20165 lspexchn1 20167 lspindpi 20169 lsmcv 20178 lshpnel 36734 lshpnelb 36735 lshpnel2N 36736 lshpdisj 36738 lsatlss 36747 lsmsat 36759 lsatfixedN 36760 lssats 36763 lsmcv2 36780 lsat0cv 36784 lkrlsp 36853 lkrlsp3 36855 lshpsmreu 36860 lshpkrlem5 36865 dochnel 39144 djhlsmat 39178 dihjat1lem 39179 dvh3dim3N 39200 lclkrlem2b 39259 lclkrlem2f 39263 lclkrlem2p 39273 lcfrvalsnN 39292 lcfrlem23 39316 mapdsn 39392 mapdn0 39420 mapdncol 39421 mapdindp 39422 mapdpglem1 39423 mapdpglem2a 39425 mapdpglem3 39426 mapdpglem6 39429 mapdpglem8 39430 mapdpglem9 39431 mapdpglem12 39434 mapdpglem13 39435 mapdpglem14 39436 mapdpglem17N 39439 mapdpglem18 39440 mapdpglem19 39441 mapdpglem21 39443 mapdpglem23 39445 mapdpglem29 39451 mapdindp0 39470 mapdheq4lem 39482 mapdh6lem1N 39484 mapdh6lem2N 39485 mapdh6dN 39490 lspindp5 39521 hdmaplem3 39524 mapdh9a 39540 hdmap1l6lem1 39558 hdmap1l6lem2 39559 hdmap1l6d 39564 hdmap1eulem 39573 hdmap11lem2 39593 hdmapeq0 39595 hdmaprnlem1N 39600 hdmaprnlem3N 39601 hdmaprnlem3uN 39602 hdmaprnlem4N 39604 hdmaprnlem7N 39606 hdmaprnlem8N 39607 hdmaprnlem9N 39608 hdmaprnlem3eN 39609 hdmaprnlem16N 39613 hdmap14lem9 39627 hgmaprnlem2N 39648 hdmapglem7a 39678 |
Copyright terms: Public domain | W3C validator |