| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20898). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4762 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20898 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 {csn 4579 ‘cfv 6486 Basecbs 17139 LModclmod 20782 LSubSpclss 20853 LSpanclspn 20893 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-sets 17094 df-slot 17112 df-ndx 17124 df-base 17140 df-plusg 17193 df-0g 17364 df-mgm 18533 df-sgrp 18612 df-mnd 18628 df-grp 18834 df-minusg 18835 df-sbg 18836 df-mgp 20045 df-ur 20086 df-ring 20139 df-lmod 20784 df-lss 20854 df-lsp 20894 |
| This theorem is referenced by: lspsnsubg 20902 ellspsni 20923 lspsn 20924 lspsnss2 20927 lsmelval2 21008 lsmpr 21012 lsppr 21016 lspprabs 21018 lspsncmp 21042 lspsnne1 21043 lspsnne2 21044 lspabs3 21047 lspsneq 21048 lspdisj 21051 lspdisj2 21053 lspfixed 21054 lspexchn1 21056 lspindpi 21058 lsmcv 21067 lshpnel 38981 lshpnelb 38982 lshpnel2N 38983 lshpdisj 38985 lsatlss 38994 lsmsat 39006 lsatfixedN 39007 lssats 39010 lsmcv2 39027 lsat0cv 39031 lkrlsp 39100 lkrlsp3 39102 lshpsmreu 39107 lshpkrlem5 39112 dochnel 41392 djhlsmat 41426 dihjat1lem 41427 dvh3dim3N 41448 lclkrlem2b 41507 lclkrlem2f 41511 lclkrlem2p 41521 lcfrvalsnN 41540 lcfrlem23 41564 mapdsn 41640 mapdn0 41668 mapdncol 41669 mapdindp 41670 mapdpglem1 41671 mapdpglem2a 41673 mapdpglem3 41674 mapdpglem6 41677 mapdpglem8 41678 mapdpglem9 41679 mapdpglem12 41682 mapdpglem13 41683 mapdpglem14 41684 mapdpglem17N 41687 mapdpglem18 41688 mapdpglem19 41689 mapdpglem21 41691 mapdpglem23 41693 mapdpglem29 41699 mapdindp0 41718 mapdheq4lem 41730 mapdh6lem1N 41732 mapdh6lem2N 41733 mapdh6dN 41738 lspindp5 41769 hdmaplem3 41772 mapdh9a 41788 hdmap1l6lem1 41806 hdmap1l6lem2 41807 hdmap1l6d 41812 hdmap1eulem 41821 hdmap11lem2 41841 hdmapeq0 41843 hdmaprnlem1N 41848 hdmaprnlem3N 41849 hdmaprnlem3uN 41850 hdmaprnlem4N 41852 hdmaprnlem7N 41854 hdmaprnlem8N 41855 hdmaprnlem9N 41856 hdmaprnlem3eN 41857 hdmaprnlem16N 41861 hdmap14lem9 41875 hgmaprnlem2N 41896 hdmapglem7a 41926 |
| Copyright terms: Public domain | W3C validator |