| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20882). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4772 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20882 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 {csn 4589 ‘cfv 6511 Basecbs 17179 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-lsp 20878 |
| This theorem is referenced by: lspsnsubg 20886 ellspsni 20907 lspsn 20908 lspsnss2 20911 lsmelval2 20992 lsmpr 20996 lsppr 21000 lspprabs 21002 lspsncmp 21026 lspsnne1 21027 lspsnne2 21028 lspabs3 21031 lspsneq 21032 lspdisj 21035 lspdisj2 21037 lspfixed 21038 lspexchn1 21040 lspindpi 21042 lsmcv 21051 lshpnel 38976 lshpnelb 38977 lshpnel2N 38978 lshpdisj 38980 lsatlss 38989 lsmsat 39001 lsatfixedN 39002 lssats 39005 lsmcv2 39022 lsat0cv 39026 lkrlsp 39095 lkrlsp3 39097 lshpsmreu 39102 lshpkrlem5 39107 dochnel 41387 djhlsmat 41421 dihjat1lem 41422 dvh3dim3N 41443 lclkrlem2b 41502 lclkrlem2f 41506 lclkrlem2p 41516 lcfrvalsnN 41535 lcfrlem23 41559 mapdsn 41635 mapdn0 41663 mapdncol 41664 mapdindp 41665 mapdpglem1 41666 mapdpglem2a 41668 mapdpglem3 41669 mapdpglem6 41672 mapdpglem8 41673 mapdpglem9 41674 mapdpglem12 41677 mapdpglem13 41678 mapdpglem14 41679 mapdpglem17N 41682 mapdpglem18 41683 mapdpglem19 41684 mapdpglem21 41686 mapdpglem23 41688 mapdpglem29 41694 mapdindp0 41713 mapdheq4lem 41725 mapdh6lem1N 41727 mapdh6lem2N 41728 mapdh6dN 41733 lspindp5 41764 hdmaplem3 41767 mapdh9a 41783 hdmap1l6lem1 41801 hdmap1l6lem2 41802 hdmap1l6d 41807 hdmap1eulem 41816 hdmap11lem2 41836 hdmapeq0 41838 hdmaprnlem1N 41843 hdmaprnlem3N 41844 hdmaprnlem3uN 41845 hdmaprnlem4N 41847 hdmaprnlem7N 41849 hdmaprnlem8N 41850 hdmaprnlem9N 41851 hdmaprnlem3eN 41852 hdmaprnlem16N 41856 hdmap14lem9 41870 hgmaprnlem2N 41891 hdmapglem7a 41921 |
| Copyright terms: Public domain | W3C validator |