| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20858). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4768 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20858 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3911 {csn 4585 ‘cfv 6499 Basecbs 17155 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mgp 20026 df-ur 20067 df-ring 20120 df-lmod 20744 df-lss 20814 df-lsp 20854 |
| This theorem is referenced by: lspsnsubg 20862 ellspsni 20883 lspsn 20884 lspsnss2 20887 lsmelval2 20968 lsmpr 20972 lsppr 20976 lspprabs 20978 lspsncmp 21002 lspsnne1 21003 lspsnne2 21004 lspabs3 21007 lspsneq 21008 lspdisj 21011 lspdisj2 21013 lspfixed 21014 lspexchn1 21016 lspindpi 21018 lsmcv 21027 lshpnel 38949 lshpnelb 38950 lshpnel2N 38951 lshpdisj 38953 lsatlss 38962 lsmsat 38974 lsatfixedN 38975 lssats 38978 lsmcv2 38995 lsat0cv 38999 lkrlsp 39068 lkrlsp3 39070 lshpsmreu 39075 lshpkrlem5 39080 dochnel 41360 djhlsmat 41394 dihjat1lem 41395 dvh3dim3N 41416 lclkrlem2b 41475 lclkrlem2f 41479 lclkrlem2p 41489 lcfrvalsnN 41508 lcfrlem23 41532 mapdsn 41608 mapdn0 41636 mapdncol 41637 mapdindp 41638 mapdpglem1 41639 mapdpglem2a 41641 mapdpglem3 41642 mapdpglem6 41645 mapdpglem8 41646 mapdpglem9 41647 mapdpglem12 41650 mapdpglem13 41651 mapdpglem14 41652 mapdpglem17N 41655 mapdpglem18 41656 mapdpglem19 41657 mapdpglem21 41659 mapdpglem23 41661 mapdpglem29 41667 mapdindp0 41686 mapdheq4lem 41698 mapdh6lem1N 41700 mapdh6lem2N 41701 mapdh6dN 41706 lspindp5 41737 hdmaplem3 41740 mapdh9a 41756 hdmap1l6lem1 41774 hdmap1l6lem2 41775 hdmap1l6d 41780 hdmap1eulem 41789 hdmap11lem2 41809 hdmapeq0 41811 hdmaprnlem1N 41816 hdmaprnlem3N 41817 hdmaprnlem3uN 41818 hdmaprnlem4N 41820 hdmaprnlem7N 41822 hdmaprnlem8N 41823 hdmaprnlem9N 41824 hdmaprnlem3eN 41825 hdmaprnlem16N 41829 hdmap14lem9 41843 hgmaprnlem2N 41864 hdmapglem7a 41894 |
| Copyright terms: Public domain | W3C validator |