![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version |
Description: The span of a singleton is a subspace (frequently used special case of lspcl 20819). (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lspval.v | β’ π = (Baseβπ) |
lspval.s | β’ π = (LSubSpβπ) |
lspval.n | β’ π = (LSpanβπ) |
Ref | Expression |
---|---|
lspsncl | β’ ((π β LMod β§ π β π) β (πβ{π}) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4811 | . 2 β’ (π β π β {π} β π) | |
2 | lspval.v | . . 3 β’ π = (Baseβπ) | |
3 | lspval.s | . . 3 β’ π = (LSubSpβπ) | |
4 | lspval.n | . . 3 β’ π = (LSpanβπ) | |
5 | 2, 3, 4 | lspcl 20819 | . 2 β’ ((π β LMod β§ {π} β π) β (πβ{π}) β π) |
6 | 1, 5 | sylan2 592 | 1 β’ ((π β LMod β§ π β π) β (πβ{π}) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1540 β wcel 2105 β wss 3948 {csn 4628 βcfv 6543 Basecbs 17151 LModclmod 20702 LSubSpclss 20774 LSpanclspn 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-2 12282 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mgp 20036 df-ur 20083 df-ring 20136 df-lmod 20704 df-lss 20775 df-lsp 20815 |
This theorem is referenced by: lspsnsubg 20823 lspsneli 20844 lspsn 20845 lspsnss2 20848 lsmelval2 20929 lsmpr 20933 lsppr 20937 lspprabs 20939 lspsncmp 20963 lspsnne1 20964 lspsnne2 20965 lspabs3 20968 lspsneq 20969 lspdisj 20972 lspdisj2 20974 lspfixed 20975 lspexchn1 20977 lspindpi 20979 lsmcv 20988 lshpnel 38320 lshpnelb 38321 lshpnel2N 38322 lshpdisj 38324 lsatlss 38333 lsmsat 38345 lsatfixedN 38346 lssats 38349 lsmcv2 38366 lsat0cv 38370 lkrlsp 38439 lkrlsp3 38441 lshpsmreu 38446 lshpkrlem5 38451 dochnel 40731 djhlsmat 40765 dihjat1lem 40766 dvh3dim3N 40787 lclkrlem2b 40846 lclkrlem2f 40850 lclkrlem2p 40860 lcfrvalsnN 40879 lcfrlem23 40903 mapdsn 40979 mapdn0 41007 mapdncol 41008 mapdindp 41009 mapdpglem1 41010 mapdpglem2a 41012 mapdpglem3 41013 mapdpglem6 41016 mapdpglem8 41017 mapdpglem9 41018 mapdpglem12 41021 mapdpglem13 41022 mapdpglem14 41023 mapdpglem17N 41026 mapdpglem18 41027 mapdpglem19 41028 mapdpglem21 41030 mapdpglem23 41032 mapdpglem29 41038 mapdindp0 41057 mapdheq4lem 41069 mapdh6lem1N 41071 mapdh6lem2N 41072 mapdh6dN 41077 lspindp5 41108 hdmaplem3 41111 mapdh9a 41127 hdmap1l6lem1 41145 hdmap1l6lem2 41146 hdmap1l6d 41151 hdmap1eulem 41160 hdmap11lem2 41180 hdmapeq0 41182 hdmaprnlem1N 41187 hdmaprnlem3N 41188 hdmaprnlem3uN 41189 hdmaprnlem4N 41191 hdmaprnlem7N 41193 hdmaprnlem8N 41194 hdmaprnlem9N 41195 hdmaprnlem3eN 41196 hdmaprnlem16N 41200 hdmap14lem9 41214 hgmaprnlem2N 41235 hdmapglem7a 41265 |
Copyright terms: Public domain | W3C validator |