![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version |
Description: The span of a singleton is a subspace (frequently used special case of lspcl 20991). (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4812 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspcl 20991 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ⊆ wss 3962 {csn 4630 ‘cfv 6562 Basecbs 17244 LModclmod 20874 LSubSpclss 20946 LSpanclspn 20986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mgp 20152 df-ur 20199 df-ring 20252 df-lmod 20876 df-lss 20947 df-lsp 20987 |
This theorem is referenced by: lspsnsubg 20995 ellspsni 21016 lspsn 21017 lspsnss2 21020 lsmelval2 21101 lsmpr 21105 lsppr 21109 lspprabs 21111 lspsncmp 21135 lspsnne1 21136 lspsnne2 21137 lspabs3 21140 lspsneq 21141 lspdisj 21144 lspdisj2 21146 lspfixed 21147 lspexchn1 21149 lspindpi 21151 lsmcv 21160 lshpnel 38964 lshpnelb 38965 lshpnel2N 38966 lshpdisj 38968 lsatlss 38977 lsmsat 38989 lsatfixedN 38990 lssats 38993 lsmcv2 39010 lsat0cv 39014 lkrlsp 39083 lkrlsp3 39085 lshpsmreu 39090 lshpkrlem5 39095 dochnel 41375 djhlsmat 41409 dihjat1lem 41410 dvh3dim3N 41431 lclkrlem2b 41490 lclkrlem2f 41494 lclkrlem2p 41504 lcfrvalsnN 41523 lcfrlem23 41547 mapdsn 41623 mapdn0 41651 mapdncol 41652 mapdindp 41653 mapdpglem1 41654 mapdpglem2a 41656 mapdpglem3 41657 mapdpglem6 41660 mapdpglem8 41661 mapdpglem9 41662 mapdpglem12 41665 mapdpglem13 41666 mapdpglem14 41667 mapdpglem17N 41670 mapdpglem18 41671 mapdpglem19 41672 mapdpglem21 41674 mapdpglem23 41676 mapdpglem29 41682 mapdindp0 41701 mapdheq4lem 41713 mapdh6lem1N 41715 mapdh6lem2N 41716 mapdh6dN 41721 lspindp5 41752 hdmaplem3 41755 mapdh9a 41771 hdmap1l6lem1 41789 hdmap1l6lem2 41790 hdmap1l6d 41795 hdmap1eulem 41804 hdmap11lem2 41824 hdmapeq0 41826 hdmaprnlem1N 41831 hdmaprnlem3N 41832 hdmaprnlem3uN 41833 hdmaprnlem4N 41835 hdmaprnlem7N 41837 hdmaprnlem8N 41838 hdmaprnlem9N 41839 hdmaprnlem3eN 41840 hdmaprnlem16N 41844 hdmap14lem9 41858 hgmaprnlem2N 41879 hdmapglem7a 41909 |
Copyright terms: Public domain | W3C validator |