| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20938). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4789 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20938 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3931 {csn 4606 ‘cfv 6536 Basecbs 17233 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mgp 20106 df-ur 20147 df-ring 20200 df-lmod 20824 df-lss 20894 df-lsp 20934 |
| This theorem is referenced by: lspsnsubg 20942 ellspsni 20963 lspsn 20964 lspsnss2 20967 lsmelval2 21048 lsmpr 21052 lsppr 21056 lspprabs 21058 lspsncmp 21082 lspsnne1 21083 lspsnne2 21084 lspabs3 21087 lspsneq 21088 lspdisj 21091 lspdisj2 21093 lspfixed 21094 lspexchn1 21096 lspindpi 21098 lsmcv 21107 lshpnel 39006 lshpnelb 39007 lshpnel2N 39008 lshpdisj 39010 lsatlss 39019 lsmsat 39031 lsatfixedN 39032 lssats 39035 lsmcv2 39052 lsat0cv 39056 lkrlsp 39125 lkrlsp3 39127 lshpsmreu 39132 lshpkrlem5 39137 dochnel 41417 djhlsmat 41451 dihjat1lem 41452 dvh3dim3N 41473 lclkrlem2b 41532 lclkrlem2f 41536 lclkrlem2p 41546 lcfrvalsnN 41565 lcfrlem23 41589 mapdsn 41665 mapdn0 41693 mapdncol 41694 mapdindp 41695 mapdpglem1 41696 mapdpglem2a 41698 mapdpglem3 41699 mapdpglem6 41702 mapdpglem8 41703 mapdpglem9 41704 mapdpglem12 41707 mapdpglem13 41708 mapdpglem14 41709 mapdpglem17N 41712 mapdpglem18 41713 mapdpglem19 41714 mapdpglem21 41716 mapdpglem23 41718 mapdpglem29 41724 mapdindp0 41743 mapdheq4lem 41755 mapdh6lem1N 41757 mapdh6lem2N 41758 mapdh6dN 41763 lspindp5 41794 hdmaplem3 41797 mapdh9a 41813 hdmap1l6lem1 41831 hdmap1l6lem2 41832 hdmap1l6d 41837 hdmap1eulem 41846 hdmap11lem2 41866 hdmapeq0 41868 hdmaprnlem1N 41873 hdmaprnlem3N 41874 hdmaprnlem3uN 41875 hdmaprnlem4N 41877 hdmaprnlem7N 41879 hdmaprnlem8N 41880 hdmaprnlem9N 41881 hdmaprnlem3eN 41882 hdmaprnlem16N 41886 hdmap14lem9 41900 hgmaprnlem2N 41921 hdmapglem7a 41951 |
| Copyright terms: Public domain | W3C validator |