| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20889). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4775 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20889 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 {csn 4592 ‘cfv 6514 Basecbs 17186 LModclmod 20773 LSubSpclss 20844 LSpanclspn 20884 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mgp 20057 df-ur 20098 df-ring 20151 df-lmod 20775 df-lss 20845 df-lsp 20885 |
| This theorem is referenced by: lspsnsubg 20893 ellspsni 20914 lspsn 20915 lspsnss2 20918 lsmelval2 20999 lsmpr 21003 lsppr 21007 lspprabs 21009 lspsncmp 21033 lspsnne1 21034 lspsnne2 21035 lspabs3 21038 lspsneq 21039 lspdisj 21042 lspdisj2 21044 lspfixed 21045 lspexchn1 21047 lspindpi 21049 lsmcv 21058 lshpnel 38983 lshpnelb 38984 lshpnel2N 38985 lshpdisj 38987 lsatlss 38996 lsmsat 39008 lsatfixedN 39009 lssats 39012 lsmcv2 39029 lsat0cv 39033 lkrlsp 39102 lkrlsp3 39104 lshpsmreu 39109 lshpkrlem5 39114 dochnel 41394 djhlsmat 41428 dihjat1lem 41429 dvh3dim3N 41450 lclkrlem2b 41509 lclkrlem2f 41513 lclkrlem2p 41523 lcfrvalsnN 41542 lcfrlem23 41566 mapdsn 41642 mapdn0 41670 mapdncol 41671 mapdindp 41672 mapdpglem1 41673 mapdpglem2a 41675 mapdpglem3 41676 mapdpglem6 41679 mapdpglem8 41680 mapdpglem9 41681 mapdpglem12 41684 mapdpglem13 41685 mapdpglem14 41686 mapdpglem17N 41689 mapdpglem18 41690 mapdpglem19 41691 mapdpglem21 41693 mapdpglem23 41695 mapdpglem29 41701 mapdindp0 41720 mapdheq4lem 41732 mapdh6lem1N 41734 mapdh6lem2N 41735 mapdh6dN 41740 lspindp5 41771 hdmaplem3 41774 mapdh9a 41790 hdmap1l6lem1 41808 hdmap1l6lem2 41809 hdmap1l6d 41814 hdmap1eulem 41823 hdmap11lem2 41843 hdmapeq0 41845 hdmaprnlem1N 41850 hdmaprnlem3N 41851 hdmaprnlem3uN 41852 hdmaprnlem4N 41854 hdmaprnlem7N 41856 hdmaprnlem8N 41857 hdmaprnlem9N 41858 hdmaprnlem3eN 41859 hdmaprnlem16N 41863 hdmap14lem9 41877 hgmaprnlem2N 41898 hdmapglem7a 41928 |
| Copyright terms: Public domain | W3C validator |