Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version |
Description: The span of a singleton is a subspace (frequently used special case of lspcl 20153). (Contributed by NM, 17-Jul-2014.) |
Ref | Expression |
---|---|
lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4738 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
5 | 2, 3, 4 | lspcl 20153 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
6 | 1, 5 | sylan2 592 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 {csn 4558 ‘cfv 6418 Basecbs 16840 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-lss 20109 df-lsp 20149 |
This theorem is referenced by: lspsnsubg 20157 lspsneli 20178 lspsn 20179 lspsnss2 20182 lsmelval2 20262 lsmpr 20266 lsppr 20270 lspprabs 20272 lspsncmp 20293 lspsnne1 20294 lspsnne2 20295 lspabs3 20298 lspsneq 20299 lspdisj 20302 lspdisj2 20304 lspfixed 20305 lspexchn1 20307 lspindpi 20309 lsmcv 20318 lshpnel 36924 lshpnelb 36925 lshpnel2N 36926 lshpdisj 36928 lsatlss 36937 lsmsat 36949 lsatfixedN 36950 lssats 36953 lsmcv2 36970 lsat0cv 36974 lkrlsp 37043 lkrlsp3 37045 lshpsmreu 37050 lshpkrlem5 37055 dochnel 39334 djhlsmat 39368 dihjat1lem 39369 dvh3dim3N 39390 lclkrlem2b 39449 lclkrlem2f 39453 lclkrlem2p 39463 lcfrvalsnN 39482 lcfrlem23 39506 mapdsn 39582 mapdn0 39610 mapdncol 39611 mapdindp 39612 mapdpglem1 39613 mapdpglem2a 39615 mapdpglem3 39616 mapdpglem6 39619 mapdpglem8 39620 mapdpglem9 39621 mapdpglem12 39624 mapdpglem13 39625 mapdpglem14 39626 mapdpglem17N 39629 mapdpglem18 39630 mapdpglem19 39631 mapdpglem21 39633 mapdpglem23 39635 mapdpglem29 39641 mapdindp0 39660 mapdheq4lem 39672 mapdh6lem1N 39674 mapdh6lem2N 39675 mapdh6dN 39680 lspindp5 39711 hdmaplem3 39714 mapdh9a 39730 hdmap1l6lem1 39748 hdmap1l6lem2 39749 hdmap1l6d 39754 hdmap1eulem 39763 hdmap11lem2 39783 hdmapeq0 39785 hdmaprnlem1N 39790 hdmaprnlem3N 39791 hdmaprnlem3uN 39792 hdmaprnlem4N 39794 hdmaprnlem7N 39796 hdmaprnlem8N 39797 hdmaprnlem9N 39798 hdmaprnlem3eN 39799 hdmaprnlem16N 39803 hdmap14lem9 39817 hgmaprnlem2N 39838 hdmapglem7a 39868 |
Copyright terms: Public domain | W3C validator |