| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20904). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4755 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20904 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4571 ‘cfv 6476 Basecbs 17115 LModclmod 20788 LSubSpclss 20859 LSpanclspn 20899 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mgp 20054 df-ur 20095 df-ring 20148 df-lmod 20790 df-lss 20860 df-lsp 20900 |
| This theorem is referenced by: lspsnsubg 20908 ellspsni 20929 lspsn 20930 lspsnss2 20933 lsmelval2 21014 lsmpr 21018 lsppr 21022 lspprabs 21024 lspsncmp 21048 lspsnne1 21049 lspsnne2 21050 lspabs3 21053 lspsneq 21054 lspdisj 21057 lspdisj2 21059 lspfixed 21060 lspexchn1 21062 lspindpi 21064 lsmcv 21073 lshpnel 39022 lshpnelb 39023 lshpnel2N 39024 lshpdisj 39026 lsatlss 39035 lsmsat 39047 lsatfixedN 39048 lssats 39051 lsmcv2 39068 lsat0cv 39072 lkrlsp 39141 lkrlsp3 39143 lshpsmreu 39148 lshpkrlem5 39153 dochnel 41432 djhlsmat 41466 dihjat1lem 41467 dvh3dim3N 41488 lclkrlem2b 41547 lclkrlem2f 41551 lclkrlem2p 41561 lcfrvalsnN 41580 lcfrlem23 41604 mapdsn 41680 mapdn0 41708 mapdncol 41709 mapdindp 41710 mapdpglem1 41711 mapdpglem2a 41713 mapdpglem3 41714 mapdpglem6 41717 mapdpglem8 41718 mapdpglem9 41719 mapdpglem12 41722 mapdpglem13 41723 mapdpglem14 41724 mapdpglem17N 41727 mapdpglem18 41728 mapdpglem19 41729 mapdpglem21 41731 mapdpglem23 41733 mapdpglem29 41739 mapdindp0 41758 mapdheq4lem 41770 mapdh6lem1N 41772 mapdh6lem2N 41773 mapdh6dN 41778 lspindp5 41809 hdmaplem3 41812 mapdh9a 41828 hdmap1l6lem1 41846 hdmap1l6lem2 41847 hdmap1l6d 41852 hdmap1eulem 41861 hdmap11lem2 41881 hdmapeq0 41883 hdmaprnlem1N 41888 hdmaprnlem3N 41889 hdmaprnlem3uN 41890 hdmaprnlem4N 41892 hdmaprnlem7N 41894 hdmaprnlem8N 41895 hdmaprnlem9N 41896 hdmaprnlem3eN 41897 hdmaprnlem16N 41901 hdmap14lem9 41915 hgmaprnlem2N 41936 hdmapglem7a 41966 |
| Copyright terms: Public domain | W3C validator |