| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lspsncl | Structured version Visualization version GIF version | ||
| Description: The span of a singleton is a subspace (frequently used special case of lspcl 20918). (Contributed by NM, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| lspval.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspval.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| lspval.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lspsncl | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi 4761 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑋} ⊆ 𝑉) | |
| 2 | lspval.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
| 3 | lspval.s | . . 3 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 4 | lspval.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 5 | 2, 3, 4 | lspcl 20918 | . 2 ⊢ ((𝑊 ∈ LMod ∧ {𝑋} ⊆ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| 6 | 1, 5 | sylan2 593 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 ‘cfv 6489 Basecbs 17127 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lsp 20914 |
| This theorem is referenced by: lspsnsubg 20922 ellspsni 20943 lspsn 20944 lspsnss2 20947 lsmelval2 21028 lsmpr 21032 lsppr 21036 lspprabs 21038 lspsncmp 21062 lspsnne1 21063 lspsnne2 21064 lspabs3 21067 lspsneq 21068 lspdisj 21071 lspdisj2 21073 lspfixed 21074 lspexchn1 21076 lspindpi 21078 lsmcv 21087 lshpnel 39155 lshpnelb 39156 lshpnel2N 39157 lshpdisj 39159 lsatlss 39168 lsmsat 39180 lsatfixedN 39181 lssats 39184 lsmcv2 39201 lsat0cv 39205 lkrlsp 39274 lkrlsp3 39276 lshpsmreu 39281 lshpkrlem5 39286 dochnel 41565 djhlsmat 41599 dihjat1lem 41600 dvh3dim3N 41621 lclkrlem2b 41680 lclkrlem2f 41684 lclkrlem2p 41694 lcfrvalsnN 41713 lcfrlem23 41737 mapdsn 41813 mapdn0 41841 mapdncol 41842 mapdindp 41843 mapdpglem1 41844 mapdpglem2a 41846 mapdpglem3 41847 mapdpglem6 41850 mapdpglem8 41851 mapdpglem9 41852 mapdpglem12 41855 mapdpglem13 41856 mapdpglem14 41857 mapdpglem17N 41860 mapdpglem18 41861 mapdpglem19 41862 mapdpglem21 41864 mapdpglem23 41866 mapdpglem29 41872 mapdindp0 41891 mapdheq4lem 41903 mapdh6lem1N 41905 mapdh6lem2N 41906 mapdh6dN 41911 lspindp5 41942 hdmaplem3 41945 mapdh9a 41961 hdmap1l6lem1 41979 hdmap1l6lem2 41980 hdmap1l6d 41985 hdmap1eulem 41994 hdmap11lem2 42014 hdmapeq0 42016 hdmaprnlem1N 42021 hdmaprnlem3N 42022 hdmaprnlem3uN 42023 hdmaprnlem4N 42025 hdmaprnlem7N 42027 hdmaprnlem8N 42028 hdmaprnlem9N 42029 hdmaprnlem3eN 42030 hdmaprnlem16N 42034 hdmap14lem9 42048 hgmaprnlem2N 42069 hdmapglem7a 42099 |
| Copyright terms: Public domain | W3C validator |