MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eluznn0 Structured version   Visualization version   GIF version

Theorem eluznn0 12956
Description: Membership in a nonnegative upper set of integers implies membership in 0. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
eluznn0 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)

Proof of Theorem eluznn0
StepHypRef Expression
1 nn0uz 12917 . 2 0 = (ℤ‘0)
21uztrn2 12894 1 ((𝑁 ∈ ℕ0𝑀 ∈ (ℤ𝑁)) → 𝑀 ∈ ℕ0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2105  cfv 6562  0cc0 11152  0cn0 12523  cuz 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-uz 12876
This theorem is referenced by:  elfz2nn0  13654  uzsubfz0  13672  leexp2r  14210  fi1uzind  14542  swrdlen2  14694  swrdfv2  14695  pfxccatpfx2  14771  geoserg  15898  geolim2  15903  geomulcvg  15908  mertenslem1  15916  mertenslem2  15917  mertens  15918  efcllem  16109  eftlcl  16139  reeftlcl  16140  eftlub  16141  efsep  16142  ruclem9  16270  smuval2  16515  smupvallem  16516  algfx  16613  eucalgcvga  16619  pcfaclem  16931  prmunb  16947  vdwlem7  17020  vdwlem10  17023  ramtlecl  17033  cpnord  25985  plyco0  26245  radcnvlem1  26470  abelthlem5  26493  abelthlem7  26496  log2tlbnd  27002  ftalem4  27133  ftalem5  27134  bcmono  27335  sseqp1  34376  subfaclim  35172  knoppndvlem6  36499  geomcau  37745  incssnn0  42698  jm2.27c  42995  iunrelexpuztr  43708  radcnvrat  44309  binomcxplemnn0  44344  stoweidlem7  45962  dignnld  48452
  Copyright terms: Public domain W3C validator