| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eluznn0 | Structured version Visualization version GIF version | ||
| Description: Membership in a nonnegative upper set of integers implies membership in ℕ0. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| eluznn0 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0uz 12886 | . 2 ⊢ ℕ0 = (ℤ≥‘0) | |
| 2 | 1 | uztrn2 12863 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝑀 ∈ (ℤ≥‘𝑁)) → 𝑀 ∈ ℕ0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2107 ‘cfv 6527 0cc0 11121 ℕ0cn0 12493 ℤ≥cuz 12844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 |
| This theorem is referenced by: elfz2nn0 13624 uzsubfz0 13642 leexp2r 14181 fi1uzind 14513 swrdlen2 14665 swrdfv2 14666 pfxccatpfx2 14742 geoserg 15869 geolim2 15874 geomulcvg 15879 mertenslem1 15887 mertenslem2 15888 mertens 15889 efcllem 16080 eftlcl 16110 reeftlcl 16111 eftlub 16112 efsep 16113 ruclem9 16241 smuval2 16486 smupvallem 16487 algfx 16584 eucalgcvga 16590 pcfaclem 16903 prmunb 16919 vdwlem7 16992 vdwlem10 16995 ramtlecl 17005 cpnord 25874 plyco0 26134 radcnvlem1 26359 abelthlem5 26382 abelthlem7 26385 log2tlbnd 26891 ftalem4 27022 ftalem5 27023 bcmono 27224 sseqp1 34335 subfaclim 35131 knoppndvlem6 36456 geomcau 37704 incssnn0 42659 jm2.27c 42956 iunrelexpuztr 43668 radcnvrat 44264 binomcxplemnn0 44299 stoweidlem7 45966 dignnld 48469 |
| Copyright terms: Public domain | W3C validator |