![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalpc | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalpc.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
Ref | Expression |
---|---|
itcovalpc | ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6906 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
2 | oveq2 7438 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐶 · 𝑥) = (𝐶 · 0)) | |
3 | 2 | oveq2d 7446 | . . . . 5 ⊢ (𝑥 = 0 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 0))) |
4 | 3 | mpteq2dv 5249 | . . . 4 ⊢ (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
5 | 1, 4 | eqeq12d 2750 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))) |
6 | fveq2 6906 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
7 | oveq2 7438 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
8 | 7 | oveq2d 7446 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝑦))) |
9 | 8 | mpteq2dv 5249 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) |
10 | 6, 9 | eqeq12d 2750 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))) |
11 | fveq2 6906 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
12 | oveq2 7438 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝐶 · 𝑥) = (𝐶 · (𝑦 + 1))) | |
13 | 12 | oveq2d 7446 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · (𝑦 + 1)))) |
14 | 13 | mpteq2dv 5249 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
15 | 11, 14 | eqeq12d 2750 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
16 | fveq2 6906 | . . . 4 ⊢ (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼)) | |
17 | oveq2 7438 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝐶 · 𝑥) = (𝐶 · 𝐼)) | |
18 | 17 | oveq2d 7446 | . . . . 5 ⊢ (𝑥 = 𝐼 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝐼))) |
19 | 18 | mpteq2dv 5249 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
20 | 16, 19 | eqeq12d 2750 | . . 3 ⊢ (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))) |
21 | itcovalpc.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) | |
22 | 21 | itcovalpclem1 48519 | . . 3 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
23 | 21 | itcovalpclem2 48520 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
24 | 23 | ancoms 458 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
25 | 24 | imp 406 | . . 3 ⊢ (((𝐶 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
26 | 5, 10, 15, 20, 22, 25 | nn0indd 12712 | . 2 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
27 | 26 | ancoms 458 | 1 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ↦ cmpt 5230 ‘cfv 6562 (class class class)co 7430 0cc0 11152 1c1 11153 + caddc 11155 · cmul 11157 ℕ0cn0 12523 IterCompcitco 48506 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-inf2 9678 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-n0 12524 df-z 12611 df-uz 12876 df-seq 14039 df-itco 48508 |
This theorem is referenced by: ackval1 48530 ackval2 48531 |
Copyright terms: Public domain | W3C validator |