Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpc Structured version   Visualization version   GIF version

Theorem itcovalpc 45073
 Description: The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpc ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalpc
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6649 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7147 . . . . . 6 (𝑥 = 0 → (𝐶 · 𝑥) = (𝐶 · 0))
32oveq2d 7155 . . . . 5 (𝑥 = 0 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 0)))
43mpteq2dv 5129 . . . 4 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
51, 4eqeq12d 2817 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))))
6 fveq2 6649 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
7 oveq2 7147 . . . . . 6 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
87oveq2d 7155 . . . . 5 (𝑥 = 𝑦 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝑦)))
98mpteq2dv 5129 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
106, 9eqeq12d 2817 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
11 fveq2 6649 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
12 oveq2 7147 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐶 · 𝑥) = (𝐶 · (𝑦 + 1)))
1312oveq2d 7155 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · (𝑦 + 1))))
1413mpteq2dv 5129 . . . 4 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
1511, 14eqeq12d 2817 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
16 fveq2 6649 . . . 4 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
17 oveq2 7147 . . . . . 6 (𝑥 = 𝐼 → (𝐶 · 𝑥) = (𝐶 · 𝐼))
1817oveq2d 7155 . . . . 5 (𝑥 = 𝐼 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝐼)))
1918mpteq2dv 5129 . . . 4 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
2016, 19eqeq12d 2817 . . 3 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))))
21 itcovalpc.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
2221itcovalpclem1 45071 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
2321itcovalpclem2 45072 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
2423ancoms 462 . . . 4 ((𝐶 ∈ ℕ0𝑦 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
2524imp 410 . . 3 (((𝐶 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
265, 10, 15, 20, 22, 25nn0indd 12071 . 2 ((𝐶 ∈ ℕ0𝐼 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
2726ancoms 462 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  0cc0 10530  1c1 10531   + caddc 10533   · cmul 10535  ℕ0cn0 11889  IterCompcitco 45058 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-inf2 9092  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-n0 11890  df-z 11974  df-uz 12236  df-seq 13369  df-itco 45060 This theorem is referenced by:  ackval1  45082  ackval2  45083
 Copyright terms: Public domain W3C validator