Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpc Structured version   Visualization version   GIF version

Theorem itcovalpc 47928
Description: The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpc ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalpc
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6896 . . . 4 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7427 . . . . . 6 (𝑥 = 0 → (𝐶 · 𝑥) = (𝐶 · 0))
32oveq2d 7435 . . . . 5 (𝑥 = 0 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 0)))
43mpteq2dv 5251 . . . 4 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
51, 4eqeq12d 2741 . . 3 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))))
6 fveq2 6896 . . . 4 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
7 oveq2 7427 . . . . . 6 (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦))
87oveq2d 7435 . . . . 5 (𝑥 = 𝑦 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝑦)))
98mpteq2dv 5251 . . . 4 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))
106, 9eqeq12d 2741 . . 3 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))))
11 fveq2 6896 . . . 4 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
12 oveq2 7427 . . . . . 6 (𝑥 = (𝑦 + 1) → (𝐶 · 𝑥) = (𝐶 · (𝑦 + 1)))
1312oveq2d 7435 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · (𝑦 + 1))))
1413mpteq2dv 5251 . . . 4 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
1511, 14eqeq12d 2741 . . 3 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
16 fveq2 6896 . . . 4 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
17 oveq2 7427 . . . . . 6 (𝑥 = 𝐼 → (𝐶 · 𝑥) = (𝐶 · 𝐼))
1817oveq2d 7435 . . . . 5 (𝑥 = 𝐼 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝐼)))
1918mpteq2dv 5251 . . . 4 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
2016, 19eqeq12d 2741 . . 3 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))))
21 itcovalpc.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
2221itcovalpclem1 47926 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
2321itcovalpclem2 47927 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
2423ancoms 457 . . . 4 ((𝐶 ∈ ℕ0𝑦 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))))
2524imp 405 . . 3 (((𝐶 ∈ ℕ0𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))
265, 10, 15, 20, 22, 25nn0indd 12692 . 2 ((𝐶 ∈ ℕ0𝐼 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
2726ancoms 457 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  cmpt 5232  cfv 6549  (class class class)co 7419  0cc0 11140  1c1 11141   + caddc 11143   · cmul 11145  0cn0 12505  IterCompcitco 47913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-inf2 9666  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-n0 12506  df-z 12592  df-uz 12856  df-seq 14003  df-itco 47915
This theorem is referenced by:  ackval1  47937  ackval2  47938
  Copyright terms: Public domain W3C validator