Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalpc | Structured version Visualization version GIF version |
Description: The value of the function that returns the n-th iterate of the "plus a constant" function with regard to composition. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalpc.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
Ref | Expression |
---|---|
itcovalpc | ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0)) | |
2 | oveq2 7277 | . . . . . 6 ⊢ (𝑥 = 0 → (𝐶 · 𝑥) = (𝐶 · 0)) | |
3 | 2 | oveq2d 7285 | . . . . 5 ⊢ (𝑥 = 0 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 0))) |
4 | 3 | mpteq2dv 5177 | . . . 4 ⊢ (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
5 | 1, 4 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))) |
6 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦)) | |
7 | oveq2 7277 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝐶 · 𝑥) = (𝐶 · 𝑦)) | |
8 | 7 | oveq2d 7285 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝑦))) |
9 | 8 | mpteq2dv 5177 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) |
10 | 6, 9 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))))) |
11 | fveq2 6768 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1))) | |
12 | oveq2 7277 | . . . . . 6 ⊢ (𝑥 = (𝑦 + 1) → (𝐶 · 𝑥) = (𝐶 · (𝑦 + 1))) | |
13 | 12 | oveq2d 7285 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · (𝑦 + 1)))) |
14 | 13 | mpteq2dv 5177 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
15 | 11, 14 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
16 | fveq2 6768 | . . . 4 ⊢ (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼)) | |
17 | oveq2 7277 | . . . . . 6 ⊢ (𝑥 = 𝐼 → (𝐶 · 𝑥) = (𝐶 · 𝐼)) | |
18 | 17 | oveq2d 7285 | . . . . 5 ⊢ (𝑥 = 𝐼 → (𝑛 + (𝐶 · 𝑥)) = (𝑛 + (𝐶 · 𝐼))) |
19 | 18 | mpteq2dv 5177 | . . . 4 ⊢ (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
20 | 16, 19 | eqeq12d 2754 | . . 3 ⊢ (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑥))) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼))))) |
21 | itcovalpc.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) | |
22 | 21 | itcovalpclem1 45973 | . . 3 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
23 | 21 | itcovalpclem2 45974 | . . . . 5 ⊢ ((𝑦 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
24 | 23 | ancoms 459 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1)))))) |
25 | 24 | imp 407 | . . 3 ⊢ (((𝐶 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝑦)))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · (𝑦 + 1))))) |
26 | 5, 10, 15, 20, 22, 25 | nn0indd 12406 | . 2 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
27 | 26 | ancoms 459 | 1 ⊢ ((𝐼 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 𝐼)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5158 ‘cfv 6428 (class class class)co 7269 0cc0 10860 1c1 10861 + caddc 10863 · cmul 10865 ℕ0cn0 12222 IterCompcitco 45960 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5210 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-inf2 9388 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-n0 12223 df-z 12309 df-uz 12572 df-seq 13711 df-itco 45962 |
This theorem is referenced by: ackval1 45984 ackval2 45985 |
Copyright terms: Public domain | W3C validator |