Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalpclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for itcovalpc 46270: induction basis. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalpc.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
Ref | Expression |
---|---|
itcovalpclem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12312 | . . 3 ⊢ ℕ0 ∈ V | |
2 | ovexd 7350 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V) | |
3 | 2 | rgen 3064 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V |
4 | itcovalpc.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) | |
5 | 4 | itcoval0mpt 46264 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
6 | 1, 3, 5 | mp2an 689 | . 2 ⊢ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛) |
7 | nn0cn 12316 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ) | |
8 | 7 | mul01d 11247 | . . . . . 6 ⊢ (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝐶 · 0) = 0) |
10 | 9 | oveq2d 7331 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0)) |
11 | nn0cn 12316 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
12 | 11 | addid1d 11248 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛) |
13 | 12 | adantl 482 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛) |
14 | 10, 13 | eqtr2d 2778 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0))) |
15 | 14 | mpteq2dva 5187 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
16 | 6, 15 | eqtrid 2789 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3062 Vcvv 3441 ↦ cmpt 5170 ‘cfv 6465 (class class class)co 7315 0cc0 10944 + caddc 10947 · cmul 10949 ℕ0cn0 12306 IterCompcitco 46255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7628 ax-inf2 9470 ax-cnex 11000 ax-resscn 11001 ax-1cn 11002 ax-icn 11003 ax-addcl 11004 ax-addrcl 11005 ax-mulcl 11006 ax-mulrcl 11007 ax-mulcom 11008 ax-addass 11009 ax-mulass 11010 ax-distr 11011 ax-i2m1 11012 ax-1ne0 11013 ax-1rid 11014 ax-rnegex 11015 ax-rrecex 11016 ax-cnre 11017 ax-pre-lttri 11018 ax-pre-lttrn 11019 ax-pre-ltadd 11020 ax-pre-mulgt0 11021 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-oprab 7319 df-mpo 7320 df-om 7758 df-2nd 7877 df-frecs 8144 df-wrecs 8175 df-recs 8249 df-rdg 8288 df-er 8546 df-en 8782 df-dom 8783 df-sdom 8784 df-pnf 11084 df-mnf 11085 df-xr 11086 df-ltxr 11087 df-le 11088 df-sub 11280 df-neg 11281 df-nn 12047 df-n0 12307 df-z 12393 df-uz 12656 df-seq 13795 df-itco 46257 |
This theorem is referenced by: itcovalpc 46270 |
Copyright terms: Public domain | W3C validator |