Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem1 Structured version   Visualization version   GIF version

Theorem itcovalpclem1 48708
Description: Lemma 1 for itcovalpc 48710: induction basis. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Distinct variable group:   𝐶,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalpclem1
StepHypRef Expression
1 nn0ex 12387 . . 3 0 ∈ V
2 ovexd 7381 . . . 4 (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V)
32rgen 3049 . . 3 𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V
4 itcovalpc.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
54itcoval0mpt 48704 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
61, 3, 5mp2an 692 . 2 ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛)
7 nn0cn 12391 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
87mul01d 11312 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0)
98adantr 480 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝐶 · 0) = 0)
109oveq2d 7362 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0))
11 nn0cn 12391 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
1211addridd 11313 . . . . 5 (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛)
1312adantl 481 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛)
1410, 13eqtr2d 2767 . . 3 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0)))
1514mpteq2dva 5184 . 2 (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
166, 15eqtrid 2778 1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cmpt 5172  cfv 6481  (class class class)co 7346  0cc0 11006   + caddc 11009   · cmul 11011  0cn0 12381  IterCompcitco 48695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-itco 48697
This theorem is referenced by:  itcovalpc  48710
  Copyright terms: Public domain W3C validator