Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalpclem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for itcovalpc 45906: induction basis. (Contributed by AV, 4-May-2024.) |
Ref | Expression |
---|---|
itcovalpc.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
Ref | Expression |
---|---|
itcovalpclem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0ex 12169 | . . 3 ⊢ ℕ0 ∈ V | |
2 | ovexd 7290 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V) | |
3 | 2 | rgen 3073 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V |
4 | itcovalpc.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) | |
5 | 4 | itcoval0mpt 45900 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
6 | 1, 3, 5 | mp2an 688 | . 2 ⊢ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛) |
7 | nn0cn 12173 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ) | |
8 | 7 | mul01d 11104 | . . . . . 6 ⊢ (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0) |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝐶 · 0) = 0) |
10 | 9 | oveq2d 7271 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0)) |
11 | nn0cn 12173 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
12 | 11 | addid1d 11105 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛) |
13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛) |
14 | 10, 13 | eqtr2d 2779 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0))) |
15 | 14 | mpteq2dva 5170 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
16 | 6, 15 | syl5eq 2791 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 0cc0 10802 + caddc 10805 · cmul 10807 ℕ0cn0 12163 IterCompcitco 45891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-itco 45893 |
This theorem is referenced by: itcovalpc 45906 |
Copyright terms: Public domain | W3C validator |