Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem1 Structured version   Visualization version   GIF version

Theorem itcovalpclem1 45904
Description: Lemma 1 for itcovalpc 45906: induction basis. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Distinct variable group:   𝐶,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalpclem1
StepHypRef Expression
1 nn0ex 12169 . . 3 0 ∈ V
2 ovexd 7290 . . . 4 (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V)
32rgen 3073 . . 3 𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V
4 itcovalpc.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
54itcoval0mpt 45900 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
61, 3, 5mp2an 688 . 2 ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛)
7 nn0cn 12173 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
87mul01d 11104 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0)
98adantr 480 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝐶 · 0) = 0)
109oveq2d 7271 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0))
11 nn0cn 12173 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
1211addid1d 11105 . . . . 5 (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛)
1312adantl 481 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛)
1410, 13eqtr2d 2779 . . 3 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0)))
1514mpteq2dva 5170 . 2 (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
166, 15syl5eq 2791 1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  cmpt 5153  cfv 6418  (class class class)co 7255  0cc0 10802   + caddc 10805   · cmul 10807  0cn0 12163  IterCompcitco 45891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-itco 45893
This theorem is referenced by:  itcovalpc  45906
  Copyright terms: Public domain W3C validator