| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itcovalpclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for itcovalpc 48800: induction basis. (Contributed by AV, 4-May-2024.) |
| Ref | Expression |
|---|---|
| itcovalpc.f | ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) |
| Ref | Expression |
|---|---|
| itcovalpclem1 | ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ex 12396 | . . 3 ⊢ ℕ0 ∈ V | |
| 2 | ovexd 7389 | . . . 4 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V) | |
| 3 | 2 | rgen 3050 | . . 3 ⊢ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V |
| 4 | itcovalpc.f | . . . 4 ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶)) | |
| 5 | 4 | itcoval0mpt 48794 | . . 3 ⊢ ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛)) |
| 6 | 1, 3, 5 | mp2an 692 | . 2 ⊢ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ 𝑛) |
| 7 | nn0cn 12400 | . . . . . . 7 ⊢ (𝐶 ∈ ℕ0 → 𝐶 ∈ ℂ) | |
| 8 | 7 | mul01d 11321 | . . . . . 6 ⊢ (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝐶 · 0) = 0) |
| 10 | 9 | oveq2d 7370 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0)) |
| 11 | nn0cn 12400 | . . . . . 6 ⊢ (𝑛 ∈ ℕ0 → 𝑛 ∈ ℂ) | |
| 12 | 11 | addridd 11322 | . . . . 5 ⊢ (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛) |
| 13 | 12 | adantl 481 | . . . 4 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛) |
| 14 | 10, 13 | eqtr2d 2769 | . . 3 ⊢ ((𝐶 ∈ ℕ0 ∧ 𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0))) |
| 15 | 14 | mpteq2dva 5188 | . 2 ⊢ (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0 ↦ 𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
| 16 | 6, 15 | eqtrid 2780 | 1 ⊢ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 Vcvv 3437 ↦ cmpt 5176 ‘cfv 6488 (class class class)co 7354 0cc0 11015 + caddc 11018 · cmul 11020 ℕ0cn0 12390 IterCompcitco 48785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-inf2 9540 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-n0 12391 df-z 12478 df-uz 12741 df-seq 13913 df-itco 48787 |
| This theorem is referenced by: itcovalpc 48800 |
| Copyright terms: Public domain | W3C validator |