Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalpclem1 Structured version   Visualization version   GIF version

Theorem itcovalpclem1 48650
Description: Lemma 1 for itcovalpc 48652: induction basis. (Contributed by AV, 4-May-2024.)
Hypothesis
Ref Expression
itcovalpc.f 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
Assertion
Ref Expression
itcovalpclem1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Distinct variable group:   𝐶,𝑛
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalpclem1
StepHypRef Expression
1 nn0ex 12507 . . 3 0 ∈ V
2 ovexd 7440 . . . 4 (𝑛 ∈ ℕ0 → (𝑛 + 𝐶) ∈ V)
32rgen 3053 . . 3 𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V
4 itcovalpc.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ (𝑛 + 𝐶))
54itcoval0mpt 48646 . . 3 ((ℕ0 ∈ V ∧ ∀𝑛 ∈ ℕ0 (𝑛 + 𝐶) ∈ V) → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛))
61, 3, 5mp2an 692 . 2 ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0𝑛)
7 nn0cn 12511 . . . . . . 7 (𝐶 ∈ ℕ0𝐶 ∈ ℂ)
87mul01d 11434 . . . . . 6 (𝐶 ∈ ℕ0 → (𝐶 · 0) = 0)
98adantr 480 . . . . 5 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝐶 · 0) = 0)
109oveq2d 7421 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + (𝐶 · 0)) = (𝑛 + 0))
11 nn0cn 12511 . . . . . 6 (𝑛 ∈ ℕ0𝑛 ∈ ℂ)
1211addridd 11435 . . . . 5 (𝑛 ∈ ℕ0 → (𝑛 + 0) = 𝑛)
1312adantl 481 . . . 4 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → (𝑛 + 0) = 𝑛)
1410, 13eqtr2d 2771 . . 3 ((𝐶 ∈ ℕ0𝑛 ∈ ℕ0) → 𝑛 = (𝑛 + (𝐶 · 0)))
1514mpteq2dva 5214 . 2 (𝐶 ∈ ℕ0 → (𝑛 ∈ ℕ0𝑛) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
166, 15eqtrid 2782 1 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (𝑛 + (𝐶 · 0))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  Vcvv 3459  cmpt 5201  cfv 6531  (class class class)co 7405  0cc0 11129   + caddc 11132   · cmul 11134  0cn0 12501  IterCompcitco 48637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-inf2 9655  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853  df-seq 14020  df-itco 48639
This theorem is referenced by:  itcovalpc  48652
  Copyright terms: Public domain W3C validator