Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2 Structured version   Visualization version   GIF version

Theorem itcovalt2 45030
 Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6652 . . . . 5 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7148 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
32oveq2d 7156 . . . . . . 7 (𝑥 = 0 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑0)))
43oveq1d 7155 . . . . . 6 (𝑥 = 0 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
54mpteq2dv 5138 . . . . 5 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
61, 5eqeq12d 2838 . . . 4 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))))
76imbi2d 344 . . 3 (𝑥 = 0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))))
8 fveq2 6652 . . . . 5 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
9 oveq2 7148 . . . . . . . 8 (𝑥 = 𝑦 → (2↑𝑥) = (2↑𝑦))
109oveq2d 7156 . . . . . . 7 (𝑥 = 𝑦 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝑦)))
1110oveq1d 7155 . . . . . 6 (𝑥 = 𝑦 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))
1211mpteq2dv 5138 . . . . 5 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
138, 12eqeq12d 2838 . . . 4 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
1413imbi2d 344 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))))
15 fveq2 6652 . . . . 5 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
16 oveq2 7148 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (2↑𝑥) = (2↑(𝑦 + 1)))
1716oveq2d 7156 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑(𝑦 + 1))))
1817oveq1d 7155 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))
1918mpteq2dv 5138 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2015, 19eqeq12d 2838 . . . 4 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
2120imbi2d 344 . . 3 (𝑥 = (𝑦 + 1) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
22 fveq2 6652 . . . . 5 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
23 oveq2 7148 . . . . . . . 8 (𝑥 = 𝐼 → (2↑𝑥) = (2↑𝐼))
2423oveq2d 7156 . . . . . . 7 (𝑥 = 𝐼 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝐼)))
2524oveq1d 7155 . . . . . 6 (𝑥 = 𝐼 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))
2625mpteq2dv 5138 . . . . 5 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
2722, 26eqeq12d 2838 . . . 4 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
2827imbi2d 344 . . 3 (𝑥 = 𝐼 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))))
29 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
3029itcovalt2lem1 45028 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
31 pm2.27 42 . . . . . . 7 (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3231adantl 485 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3329itcovalt2lem2 45029 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3432, 33syld 47 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3534ex 416 . . . 4 (𝑦 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
3635com23 86 . . 3 (𝑦 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
377, 14, 21, 28, 30, 36nn0ind 12065 . 2 (𝐼 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
3837imp 410 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2114   ↦ cmpt 5122  ‘cfv 6334  (class class class)co 7140  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   − cmin 10859  2c2 11680  ℕ0cn0 11885  ↑cexp 13425  IterCompcitco 45010 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-inf2 9092  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426  df-itco 45012 This theorem is referenced by:  ackval3  45036
 Copyright terms: Public domain W3C validator