Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2 Structured version   Visualization version   GIF version

Theorem itcovalt2 48637
Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6881 . . . . 5 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7418 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
32oveq2d 7426 . . . . . . 7 (𝑥 = 0 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑0)))
43oveq1d 7425 . . . . . 6 (𝑥 = 0 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
54mpteq2dv 5220 . . . . 5 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
61, 5eqeq12d 2752 . . . 4 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))))
76imbi2d 340 . . 3 (𝑥 = 0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))))
8 fveq2 6881 . . . . 5 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
9 oveq2 7418 . . . . . . . 8 (𝑥 = 𝑦 → (2↑𝑥) = (2↑𝑦))
109oveq2d 7426 . . . . . . 7 (𝑥 = 𝑦 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝑦)))
1110oveq1d 7425 . . . . . 6 (𝑥 = 𝑦 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))
1211mpteq2dv 5220 . . . . 5 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
138, 12eqeq12d 2752 . . . 4 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
1413imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))))
15 fveq2 6881 . . . . 5 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
16 oveq2 7418 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (2↑𝑥) = (2↑(𝑦 + 1)))
1716oveq2d 7426 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑(𝑦 + 1))))
1817oveq1d 7425 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))
1918mpteq2dv 5220 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2015, 19eqeq12d 2752 . . . 4 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
2120imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
22 fveq2 6881 . . . . 5 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
23 oveq2 7418 . . . . . . . 8 (𝑥 = 𝐼 → (2↑𝑥) = (2↑𝐼))
2423oveq2d 7426 . . . . . . 7 (𝑥 = 𝐼 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝐼)))
2524oveq1d 7425 . . . . . 6 (𝑥 = 𝐼 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))
2625mpteq2dv 5220 . . . . 5 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
2722, 26eqeq12d 2752 . . . 4 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
2827imbi2d 340 . . 3 (𝑥 = 𝐼 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))))
29 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
3029itcovalt2lem1 48635 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
31 pm2.27 42 . . . . . . 7 (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3231adantl 481 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3329itcovalt2lem2 48636 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3432, 33syld 47 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3534ex 412 . . . 4 (𝑦 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
3635com23 86 . . 3 (𝑦 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
377, 14, 21, 28, 30, 36nn0ind 12693 . 2 (𝐼 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
3837imp 406 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5206  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139  cmin 11471  2c2 12300  0cn0 12506  cexp 14084  IterCompcitco 48617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-seq 14025  df-exp 14085  df-itco 48619
This theorem is referenced by:  ackval3  48643
  Copyright terms: Public domain W3C validator