Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2 Structured version   Visualization version   GIF version

Theorem itcovalt2 48544
Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6887 . . . . 5 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7422 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
32oveq2d 7430 . . . . . . 7 (𝑥 = 0 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑0)))
43oveq1d 7429 . . . . . 6 (𝑥 = 0 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
54mpteq2dv 5226 . . . . 5 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
61, 5eqeq12d 2750 . . . 4 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))))
76imbi2d 340 . . 3 (𝑥 = 0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))))
8 fveq2 6887 . . . . 5 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
9 oveq2 7422 . . . . . . . 8 (𝑥 = 𝑦 → (2↑𝑥) = (2↑𝑦))
109oveq2d 7430 . . . . . . 7 (𝑥 = 𝑦 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝑦)))
1110oveq1d 7429 . . . . . 6 (𝑥 = 𝑦 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))
1211mpteq2dv 5226 . . . . 5 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
138, 12eqeq12d 2750 . . . 4 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
1413imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))))
15 fveq2 6887 . . . . 5 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
16 oveq2 7422 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (2↑𝑥) = (2↑(𝑦 + 1)))
1716oveq2d 7430 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑(𝑦 + 1))))
1817oveq1d 7429 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))
1918mpteq2dv 5226 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2015, 19eqeq12d 2750 . . . 4 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
2120imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
22 fveq2 6887 . . . . 5 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
23 oveq2 7422 . . . . . . . 8 (𝑥 = 𝐼 → (2↑𝑥) = (2↑𝐼))
2423oveq2d 7430 . . . . . . 7 (𝑥 = 𝐼 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝐼)))
2524oveq1d 7429 . . . . . 6 (𝑥 = 𝐼 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))
2625mpteq2dv 5226 . . . . 5 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
2722, 26eqeq12d 2750 . . . 4 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
2827imbi2d 340 . . 3 (𝑥 = 𝐼 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))))
29 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
3029itcovalt2lem1 48542 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
31 pm2.27 42 . . . . . . 7 (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3231adantl 481 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3329itcovalt2lem2 48543 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3432, 33syld 47 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3534ex 412 . . . 4 (𝑦 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
3635com23 86 . . 3 (𝑦 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
377, 14, 21, 28, 30, 36nn0ind 12697 . 2 (𝐼 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
3837imp 406 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  cmpt 5207  cfv 6542  (class class class)co 7414  0cc0 11138  1c1 11139   + caddc 11141   · cmul 11143  cmin 11475  2c2 12304  0cn0 12510  cexp 14085  IterCompcitco 48524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-z 12598  df-uz 12862  df-seq 14026  df-exp 14086  df-itco 48526
This theorem is referenced by:  ackval3  48550
  Copyright terms: Public domain W3C validator