Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itcovalt2 Structured version   Visualization version   GIF version

Theorem itcovalt2 46275
Description: The value of the function that returns the n-th iterate of the "times 2 plus a constant" function with regard to composition. (Contributed by AV, 7-May-2024.)
Hypothesis
Ref Expression
itcovalt2.f 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
Assertion
Ref Expression
itcovalt2 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Distinct variable groups:   𝐶,𝑛   𝑛,𝐼
Allowed substitution hint:   𝐹(𝑛)

Proof of Theorem itcovalt2
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6811 . . . . 5 (𝑥 = 0 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘0))
2 oveq2 7323 . . . . . . . 8 (𝑥 = 0 → (2↑𝑥) = (2↑0))
32oveq2d 7331 . . . . . . 7 (𝑥 = 0 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑0)))
43oveq1d 7330 . . . . . 6 (𝑥 = 0 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑0)) − 𝐶))
54mpteq2dv 5189 . . . . 5 (𝑥 = 0 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
61, 5eqeq12d 2753 . . . 4 (𝑥 = 0 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶))))
76imbi2d 340 . . 3 (𝑥 = 0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))))
8 fveq2 6811 . . . . 5 (𝑥 = 𝑦 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝑦))
9 oveq2 7323 . . . . . . . 8 (𝑥 = 𝑦 → (2↑𝑥) = (2↑𝑦))
109oveq2d 7331 . . . . . . 7 (𝑥 = 𝑦 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝑦)))
1110oveq1d 7330 . . . . . 6 (𝑥 = 𝑦 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))
1211mpteq2dv 5189 . . . . 5 (𝑥 = 𝑦 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))
138, 12eqeq12d 2753 . . . 4 (𝑥 = 𝑦 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
1413imbi2d 340 . . 3 (𝑥 = 𝑦 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)))))
15 fveq2 6811 . . . . 5 (𝑥 = (𝑦 + 1) → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘(𝑦 + 1)))
16 oveq2 7323 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (2↑𝑥) = (2↑(𝑦 + 1)))
1716oveq2d 7331 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑(𝑦 + 1))))
1817oveq1d 7330 . . . . . 6 (𝑥 = (𝑦 + 1) → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))
1918mpteq2dv 5189 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))
2015, 19eqeq12d 2753 . . . 4 (𝑥 = (𝑦 + 1) → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
2120imbi2d 340 . . 3 (𝑥 = (𝑦 + 1) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
22 fveq2 6811 . . . . 5 (𝑥 = 𝐼 → ((IterComp‘𝐹)‘𝑥) = ((IterComp‘𝐹)‘𝐼))
23 oveq2 7323 . . . . . . . 8 (𝑥 = 𝐼 → (2↑𝑥) = (2↑𝐼))
2423oveq2d 7331 . . . . . . 7 (𝑥 = 𝐼 → ((𝑛 + 𝐶) · (2↑𝑥)) = ((𝑛 + 𝐶) · (2↑𝐼)))
2524oveq1d 7330 . . . . . 6 (𝑥 = 𝐼 → (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶) = (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))
2625mpteq2dv 5189 . . . . 5 (𝑥 = 𝐼 → (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
2722, 26eqeq12d 2753 . . . 4 (𝑥 = 𝐼 → (((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶)) ↔ ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
2827imbi2d 340 . . 3 (𝑥 = 𝐼 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑥) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑥)) − 𝐶))) ↔ (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))))
29 itcovalt2.f . . . 4 𝐹 = (𝑛 ∈ ℕ0 ↦ ((2 · 𝑛) + 𝐶))
3029itcovalt2lem1 46273 . . 3 (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘0) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑0)) − 𝐶)))
31 pm2.27 42 . . . . . . 7 (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3231adantl 482 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))))
3329itcovalt2lem2 46274 . . . . . 6 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → (((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶)) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3432, 33syld 47 . . . . 5 ((𝑦 ∈ ℕ0𝐶 ∈ ℕ0) → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶))))
3534ex 413 . . . 4 (𝑦 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
3635com23 86 . . 3 (𝑦 ∈ ℕ0 → ((𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝑦) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝑦)) − 𝐶))) → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘(𝑦 + 1)) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑(𝑦 + 1))) − 𝐶)))))
377, 14, 21, 28, 30, 36nn0ind 12488 . 2 (𝐼 ∈ ℕ0 → (𝐶 ∈ ℕ0 → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶))))
3837imp 407 1 ((𝐼 ∈ ℕ0𝐶 ∈ ℕ0) → ((IterComp‘𝐹)‘𝐼) = (𝑛 ∈ ℕ0 ↦ (((𝑛 + 𝐶) · (2↑𝐼)) − 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  cmpt 5170  cfv 6465  (class class class)co 7315  0cc0 10944  1c1 10945   + caddc 10947   · cmul 10949  cmin 11278  2c2 12101  0cn0 12306  cexp 13855  IterCompcitco 46255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-inf2 9470  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-2 12109  df-n0 12307  df-z 12393  df-uz 12656  df-seq 13795  df-exp 13856  df-itco 46257
This theorem is referenced by:  ackval3  46281
  Copyright terms: Public domain W3C validator