| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 7 | lemul1a 11982 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
| 8 | 1, 2, 5, 6, 7 | syl31anc 1375 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 class class class wbr 5093 (class class class)co 7352 ℝcr 11012 0cc0 11013 · cmul 11018 ≤ cle 11154 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 |
| This theorem is referenced by: bernneq 14138 o1fsum 15722 cvgrat 15792 prmreclem3 16832 nlmvscnlem2 24601 nghmcn 24661 ipcnlem2 25172 dvlip 25926 dvlipcn 25927 dvfsumlem4 25964 dvfsum2 25969 aalioulem3 26270 radcnvlem1 26350 radcnvlem2 26351 abelthlem5 26373 abelthlem7 26376 logtayllem 26596 abscxpbnd 26691 efrlim 26907 efrlimOLD 26908 lgamgulmlem5 26971 chpub 27159 2sqlem8 27365 rplogsumlem1 27423 rpvmasumlem 27426 dchrisumlem3 27430 dchrvmasumlem3 27438 mulog2sumlem2 27474 selberglem2 27485 selberg2lem 27489 pntrlog2bndlem3 27518 pntrlog2bndlem5 27520 pntlemj 27542 ostth2lem2 27573 axpaschlem 28920 smcnlem 30679 htthlem 30899 lnconi 32015 cnlnadjlem7 32055 nnmulge 32726 nexple 32832 logdivsqrle 34684 hgt750lemf 34687 bfplem2 37883 aks4d1p1p7 42187 posbezout 42213 aks6d1c7lem1 42293 fltnltalem 42780 jm2.24nn 43076 areaquad 43333 int-ineq2ndprincd 44310 fmul01lt1lem2 45709 dvbdfbdioolem1 46050 fourierdlem19 46248 fourierdlem39 46268 hsphoidmvle2 46707 hsphoidmvle 46708 hoidmvlelem2 46718 smfmullem1 46913 |
| Copyright terms: Public domain | W3C validator |