| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 7 | lemul1a 12043 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
| 8 | 1, 2, 5, 6, 7 | syl31anc 1375 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 0cc0 11075 · cmul 11080 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 |
| This theorem is referenced by: bernneq 14201 o1fsum 15786 cvgrat 15856 prmreclem3 16896 nlmvscnlem2 24580 nghmcn 24640 ipcnlem2 25151 dvlip 25905 dvlipcn 25906 dvfsumlem4 25943 dvfsum2 25948 aalioulem3 26249 radcnvlem1 26329 radcnvlem2 26330 abelthlem5 26352 abelthlem7 26355 logtayllem 26575 abscxpbnd 26670 efrlim 26886 efrlimOLD 26887 lgamgulmlem5 26950 chpub 27138 2sqlem8 27344 rplogsumlem1 27402 rpvmasumlem 27405 dchrisumlem3 27409 dchrvmasumlem3 27417 mulog2sumlem2 27453 selberglem2 27464 selberg2lem 27468 pntrlog2bndlem3 27497 pntrlog2bndlem5 27499 pntlemj 27521 ostth2lem2 27552 axpaschlem 28874 smcnlem 30633 htthlem 30853 lnconi 31969 cnlnadjlem7 32009 nnmulge 32669 nexple 32776 logdivsqrle 34648 hgt750lemf 34651 bfplem2 37824 aks4d1p1p7 42069 posbezout 42095 aks6d1c7lem1 42175 fltnltalem 42657 jm2.24nn 42955 areaquad 43212 int-ineq2ndprincd 44189 fmul01lt1lem2 45590 dvbdfbdioolem1 45933 fourierdlem19 46131 fourierdlem39 46151 hsphoidmvle2 46590 hsphoidmvle 46591 hoidmvlelem2 46601 smfmullem1 46796 |
| Copyright terms: Public domain | W3C validator |