| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 7 | lemul1a 11972 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
| 8 | 1, 2, 5, 6, 7 | syl31anc 1375 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5091 (class class class)co 7346 ℝcr 11002 0cc0 11003 · cmul 11008 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 |
| This theorem is referenced by: bernneq 14133 o1fsum 15717 cvgrat 15787 prmreclem3 16827 nlmvscnlem2 24598 nghmcn 24658 ipcnlem2 25169 dvlip 25923 dvlipcn 25924 dvfsumlem4 25961 dvfsum2 25966 aalioulem3 26267 radcnvlem1 26347 radcnvlem2 26348 abelthlem5 26370 abelthlem7 26373 logtayllem 26593 abscxpbnd 26688 efrlim 26904 efrlimOLD 26905 lgamgulmlem5 26968 chpub 27156 2sqlem8 27362 rplogsumlem1 27420 rpvmasumlem 27423 dchrisumlem3 27427 dchrvmasumlem3 27435 mulog2sumlem2 27471 selberglem2 27482 selberg2lem 27486 pntrlog2bndlem3 27515 pntrlog2bndlem5 27517 pntlemj 27539 ostth2lem2 27570 axpaschlem 28916 smcnlem 30672 htthlem 30892 lnconi 32008 cnlnadjlem7 32048 nnmulge 32717 nexple 32822 logdivsqrle 34658 hgt750lemf 34661 bfplem2 37862 aks4d1p1p7 42106 posbezout 42132 aks6d1c7lem1 42212 fltnltalem 42694 jm2.24nn 42991 areaquad 43248 int-ineq2ndprincd 44225 fmul01lt1lem2 45624 dvbdfbdioolem1 45965 fourierdlem19 46163 fourierdlem39 46183 hsphoidmvle2 46622 hsphoidmvle 46623 hoidmvlelem2 46633 smfmullem1 46828 |
| Copyright terms: Public domain | W3C validator |