MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Visualization version   GIF version

Theorem lemul1ad 12234
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul1ad (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 511 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul1a 12148 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
81, 2, 5, 6, 7syl31anc 1373 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184   · cmul 11189  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523
This theorem is referenced by:  bernneq  14278  o1fsum  15861  cvgrat  15931  prmreclem3  16965  nlmvscnlem2  24727  nghmcn  24787  ipcnlem2  25297  dvlip  26052  dvlipcn  26053  dvfsumlem4  26090  dvfsum2  26095  aalioulem3  26394  radcnvlem1  26474  radcnvlem2  26475  abelthlem5  26497  abelthlem7  26500  logtayllem  26719  abscxpbnd  26814  efrlim  27030  efrlimOLD  27031  lgamgulmlem5  27094  chpub  27282  2sqlem8  27488  rplogsumlem1  27546  rpvmasumlem  27549  dchrisumlem3  27553  dchrvmasumlem3  27561  mulog2sumlem2  27597  selberglem2  27608  selberg2lem  27612  pntrlog2bndlem3  27641  pntrlog2bndlem5  27643  pntlemj  27665  ostth2lem2  27696  axpaschlem  28973  smcnlem  30729  htthlem  30949  lnconi  32065  cnlnadjlem7  32105  nnmulge  32752  nexple  33973  logdivsqrle  34627  hgt750lemf  34630  bfplem2  37783  aks4d1p1p7  42031  posbezout  42057  aks6d1c7lem1  42137  fltnltalem  42617  jm2.24nn  42916  areaquad  43177  int-ineq2ndprincd  44155  fmul01lt1lem2  45506  dvbdfbdioolem1  45849  fourierdlem19  46047  fourierdlem39  46067  hsphoidmvle2  46506  hsphoidmvle  46507  hoidmvlelem2  46517  smfmullem1  46712
  Copyright terms: Public domain W3C validator