MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Visualization version   GIF version

Theorem lemul1ad 11860
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul1ad (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 511 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul1a 11775 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
81, 2, 5, 6, 7syl31anc 1371 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2107   class class class wbr 5075  (class class class)co 7260  cr 10817  0cc0 10818   · cmul 10823  cle 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7571  ax-resscn 10875  ax-1cn 10876  ax-icn 10877  ax-addcl 10878  ax-addrcl 10879  ax-mulcl 10880  ax-mulrcl 10881  ax-mulcom 10882  ax-addass 10883  ax-mulass 10884  ax-distr 10885  ax-i2m1 10886  ax-1ne0 10887  ax-1rid 10888  ax-rnegex 10889  ax-rrecex 10890  ax-cnre 10891  ax-pre-lttri 10892  ax-pre-lttrn 10893  ax-pre-ltadd 10894  ax-pre-mulgt0 10895
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rab 3071  df-v 3429  df-sbc 3717  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-br 5076  df-opab 5138  df-mpt 5159  df-id 5485  df-po 5499  df-so 5500  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-iota 6381  df-fun 6425  df-fn 6426  df-f 6427  df-f1 6428  df-fo 6429  df-f1o 6430  df-fv 6431  df-riota 7217  df-ov 7263  df-oprab 7264  df-mpo 7265  df-er 8461  df-en 8697  df-dom 8698  df-sdom 8699  df-pnf 10958  df-mnf 10959  df-xr 10960  df-ltxr 10961  df-le 10962  df-sub 11153  df-neg 11154
This theorem is referenced by:  bernneq  13888  o1fsum  15469  cvgrat  15539  prmreclem3  16563  nlmvscnlem2  23793  nghmcn  23853  ipcnlem2  24351  dvlip  25100  dvlipcn  25101  dvfsumlem4  25136  dvfsum2  25141  aalioulem3  25437  radcnvlem1  25515  radcnvlem2  25516  abelthlem5  25537  abelthlem7  25540  logtayllem  25757  abscxpbnd  25849  efrlim  26062  lgamgulmlem5  26125  chpub  26311  2sqlem8  26517  rplogsumlem1  26575  rpvmasumlem  26578  dchrisumlem3  26582  dchrvmasumlem3  26590  mulog2sumlem2  26626  selberglem2  26637  selberg2lem  26641  pntrlog2bndlem3  26670  pntrlog2bndlem5  26672  pntlemj  26694  ostth2lem2  26725  axpaschlem  27251  smcnlem  29000  htthlem  29220  lnconi  30336  cnlnadjlem7  30376  nnmulge  31015  nexple  31919  logdivsqrle  32572  hgt750lemf  32575  bfplem2  35950  aks4d1p1p7  40052  fltnltalem  40457  jm2.24nn  40739  areaquad  41005  int-ineq2ndprincd  41735  fmul01lt1lem2  43058  dvbdfbdioolem1  43401  fourierdlem19  43599  fourierdlem39  43619  hsphoidmvle2  44055  hsphoidmvle  44056  hoidmvlelem2  44066  smfmullem1  44254
  Copyright terms: Public domain W3C validator