Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version |
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
7 | lemul1a 11759 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
8 | 1, 2, 5, 6, 7 | syl31anc 1371 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 0cc0 10802 · cmul 10807 ≤ cle 10941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: bernneq 13872 o1fsum 15453 cvgrat 15523 prmreclem3 16547 nlmvscnlem2 23755 nghmcn 23815 ipcnlem2 24313 dvlip 25062 dvlipcn 25063 dvfsumlem4 25098 dvfsum2 25103 aalioulem3 25399 radcnvlem1 25477 radcnvlem2 25478 abelthlem5 25499 abelthlem7 25502 logtayllem 25719 abscxpbnd 25811 efrlim 26024 lgamgulmlem5 26087 chpub 26273 2sqlem8 26479 rplogsumlem1 26537 rpvmasumlem 26540 dchrisumlem3 26544 dchrvmasumlem3 26552 mulog2sumlem2 26588 selberglem2 26599 selberg2lem 26603 pntrlog2bndlem3 26632 pntrlog2bndlem5 26634 pntlemj 26656 ostth2lem2 26687 axpaschlem 27211 smcnlem 28960 htthlem 29180 lnconi 30296 cnlnadjlem7 30336 nnmulge 30975 nexple 31877 logdivsqrle 32530 hgt750lemf 32533 bfplem2 35908 aks4d1p1p7 40010 fltnltalem 40415 jm2.24nn 40697 areaquad 40963 int-ineq2ndprincd 41693 fmul01lt1lem2 43016 dvbdfbdioolem1 43359 fourierdlem19 43557 fourierdlem39 43577 hsphoidmvle2 44013 hsphoidmvle 44014 hoidmvlelem2 44024 smfmullem1 44212 |
Copyright terms: Public domain | W3C validator |