MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Visualization version   GIF version

Theorem lemul1ad 12205
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (𝜑𝐴 ∈ ℝ)
divgt0d.2 (𝜑𝐵 ∈ ℝ)
lemul1ad.3 (𝜑𝐶 ∈ ℝ)
lemul1ad.4 (𝜑 → 0 ≤ 𝐶)
lemul1ad.5 (𝜑𝐴𝐵)
Assertion
Ref Expression
lemul1ad (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2 (𝜑𝐴 ∈ ℝ)
2 divgt0d.2 . 2 (𝜑𝐵 ∈ ℝ)
3 lemul1ad.3 . . 3 (𝜑𝐶 ∈ ℝ)
4 lemul1ad.4 . . 3 (𝜑 → 0 ≤ 𝐶)
53, 4jca 511 . 2 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
6 lemul1ad.5 . 2 (𝜑𝐴𝐵)
7 lemul1a 12119 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
81, 2, 5, 6, 7syl31anc 1372 1 (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2106   class class class wbr 5148  (class class class)co 7431  cr 11152  0cc0 11153   · cmul 11158  cle 11294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493
This theorem is referenced by:  bernneq  14265  o1fsum  15846  cvgrat  15916  prmreclem3  16952  nlmvscnlem2  24722  nghmcn  24782  ipcnlem2  25292  dvlip  26047  dvlipcn  26048  dvfsumlem4  26085  dvfsum2  26090  aalioulem3  26391  radcnvlem1  26471  radcnvlem2  26472  abelthlem5  26494  abelthlem7  26497  logtayllem  26716  abscxpbnd  26811  efrlim  27027  efrlimOLD  27028  lgamgulmlem5  27091  chpub  27279  2sqlem8  27485  rplogsumlem1  27543  rpvmasumlem  27546  dchrisumlem3  27550  dchrvmasumlem3  27558  mulog2sumlem2  27594  selberglem2  27605  selberg2lem  27609  pntrlog2bndlem3  27638  pntrlog2bndlem5  27640  pntlemj  27662  ostth2lem2  27693  axpaschlem  28970  smcnlem  30726  htthlem  30946  lnconi  32062  cnlnadjlem7  32102  nnmulge  32756  nexple  33990  logdivsqrle  34644  hgt750lemf  34647  bfplem2  37810  aks4d1p1p7  42056  posbezout  42082  aks6d1c7lem1  42162  fltnltalem  42649  jm2.24nn  42948  areaquad  43205  int-ineq2ndprincd  44183  fmul01lt1lem2  45541  dvbdfbdioolem1  45884  fourierdlem19  46082  fourierdlem39  46102  hsphoidmvle2  46541  hsphoidmvle  46542  hoidmvlelem2  46552  smfmullem1  46747
  Copyright terms: Public domain W3C validator