![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version |
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
Ref | Expression |
---|---|
ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
Ref | Expression |
---|---|
lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
7 | lemul1a 12090 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
8 | 1, 2, 5, 6, 7 | syl31anc 1371 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2099 class class class wbr 5142 (class class class)co 7414 ℝcr 11129 0cc0 11130 · cmul 11135 ≤ cle 11271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 |
This theorem is referenced by: bernneq 14215 o1fsum 15783 cvgrat 15853 prmreclem3 16878 nlmvscnlem2 24589 nghmcn 24649 ipcnlem2 25159 dvlip 25913 dvlipcn 25914 dvfsumlem4 25951 dvfsum2 25956 aalioulem3 26256 radcnvlem1 26336 radcnvlem2 26337 abelthlem5 26359 abelthlem7 26362 logtayllem 26580 abscxpbnd 26675 efrlim 26888 efrlimOLD 26889 lgamgulmlem5 26952 chpub 27140 2sqlem8 27346 rplogsumlem1 27404 rpvmasumlem 27407 dchrisumlem3 27411 dchrvmasumlem3 27419 mulog2sumlem2 27455 selberglem2 27466 selberg2lem 27470 pntrlog2bndlem3 27499 pntrlog2bndlem5 27501 pntlemj 27523 ostth2lem2 27554 axpaschlem 28738 smcnlem 30494 htthlem 30714 lnconi 31830 cnlnadjlem7 31870 nnmulge 32504 nexple 33564 logdivsqrle 34218 hgt750lemf 34221 bfplem2 37231 aks4d1p1p7 41482 posbezout 41507 fltnltalem 42008 jm2.24nn 42302 areaquad 42567 int-ineq2ndprincd 43546 fmul01lt1lem2 44896 dvbdfbdioolem1 45239 fourierdlem19 45437 fourierdlem39 45457 hsphoidmvle2 45896 hsphoidmvle 45897 hoidmvlelem2 45907 smfmullem1 46102 |
Copyright terms: Public domain | W3C validator |