MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Visualization version   GIF version

Theorem lemul1ad 12095
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
divgt0d.2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
lemul1ad.3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
lemul1ad.4 (๐œ‘ โ†’ 0 โ‰ค ๐ถ)
lemul1ad.5 (๐œ‘ โ†’ ๐ด โ‰ค ๐ต)
Assertion
Ref Expression
lemul1ad (๐œ‘ โ†’ (๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ))

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„)
2 divgt0d.2 . 2 (๐œ‘ โ†’ ๐ต โˆˆ โ„)
3 lemul1ad.3 . . 3 (๐œ‘ โ†’ ๐ถ โˆˆ โ„)
4 lemul1ad.4 . . 3 (๐œ‘ โ†’ 0 โ‰ค ๐ถ)
53, 4jca 513 . 2 (๐œ‘ โ†’ (๐ถ โˆˆ โ„ โˆง 0 โ‰ค ๐ถ))
6 lemul1ad.5 . 2 (๐œ‘ โ†’ ๐ด โ‰ค ๐ต)
7 lemul1a 12010 . 2 (((๐ด โˆˆ โ„ โˆง ๐ต โˆˆ โ„ โˆง (๐ถ โˆˆ โ„ โˆง 0 โ‰ค ๐ถ)) โˆง ๐ด โ‰ค ๐ต) โ†’ (๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ))
81, 2, 5, 6, 7syl31anc 1374 1 (๐œ‘ โ†’ (๐ด ยท ๐ถ) โ‰ค (๐ต ยท ๐ถ))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 397   โˆˆ wcel 2107   class class class wbr 5106  (class class class)co 7358  โ„cr 11051  0cc0 11052   ยท cmul 11057   โ‰ค cle 11191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11109  ax-1cn 11110  ax-icn 11111  ax-addcl 11112  ax-addrcl 11113  ax-mulcl 11114  ax-mulrcl 11115  ax-mulcom 11116  ax-addass 11117  ax-mulass 11118  ax-distr 11119  ax-i2m1 11120  ax-1ne0 11121  ax-1rid 11122  ax-rnegex 11123  ax-rrecex 11124  ax-cnre 11125  ax-pre-lttri 11126  ax-pre-lttrn 11127  ax-pre-ltadd 11128  ax-pre-mulgt0 11129
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-reu 3355  df-rab 3409  df-v 3448  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8649  df-en 8885  df-dom 8886  df-sdom 8887  df-pnf 11192  df-mnf 11193  df-xr 11194  df-ltxr 11195  df-le 11196  df-sub 11388  df-neg 11389
This theorem is referenced by:  bernneq  14133  o1fsum  15699  cvgrat  15769  prmreclem3  16791  nlmvscnlem2  24052  nghmcn  24112  ipcnlem2  24611  dvlip  25360  dvlipcn  25361  dvfsumlem4  25396  dvfsum2  25401  aalioulem3  25697  radcnvlem1  25775  radcnvlem2  25776  abelthlem5  25797  abelthlem7  25800  logtayllem  26017  abscxpbnd  26109  efrlim  26322  lgamgulmlem5  26385  chpub  26571  2sqlem8  26777  rplogsumlem1  26835  rpvmasumlem  26838  dchrisumlem3  26842  dchrvmasumlem3  26850  mulog2sumlem2  26886  selberglem2  26897  selberg2lem  26901  pntrlog2bndlem3  26930  pntrlog2bndlem5  26932  pntlemj  26954  ostth2lem2  26985  axpaschlem  27892  smcnlem  29642  htthlem  29862  lnconi  30978  cnlnadjlem7  31018  nnmulge  31658  nexple  32611  logdivsqrle  33266  hgt750lemf  33269  bfplem2  36285  aks4d1p1p7  40534  fltnltalem  41003  jm2.24nn  41286  areaquad  41553  int-ineq2ndprincd  42473  fmul01lt1lem2  43833  dvbdfbdioolem1  44176  fourierdlem19  44374  fourierdlem39  44394  hsphoidmvle2  44833  hsphoidmvle  44834  hoidmvlelem2  44844  smfmullem1  45039
  Copyright terms: Public domain W3C validator