| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lemul1ad | Structured version Visualization version GIF version | ||
| Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.) |
| Ref | Expression |
|---|---|
| ltp1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| divgt0d.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| lemul1ad.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| lemul1ad.4 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| lemul1ad.5 | ⊢ (𝜑 → 𝐴 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| lemul1ad | ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | divgt0d.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | lemul1ad.3 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 4 | lemul1ad.4 | . . 3 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 5 | 3, 4 | jca 511 | . 2 ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
| 6 | lemul1ad.5 | . 2 ⊢ (𝜑 → 𝐴 ≤ 𝐵) | |
| 7 | lemul1a 12036 | . 2 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴 ≤ 𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) | |
| 8 | 1, 2, 5, 6, 7 | syl31anc 1375 | 1 ⊢ (𝜑 → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 0cc0 11068 · cmul 11073 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 |
| This theorem is referenced by: bernneq 14194 o1fsum 15779 cvgrat 15849 prmreclem3 16889 nlmvscnlem2 24573 nghmcn 24633 ipcnlem2 25144 dvlip 25898 dvlipcn 25899 dvfsumlem4 25936 dvfsum2 25941 aalioulem3 26242 radcnvlem1 26322 radcnvlem2 26323 abelthlem5 26345 abelthlem7 26348 logtayllem 26568 abscxpbnd 26663 efrlim 26879 efrlimOLD 26880 lgamgulmlem5 26943 chpub 27131 2sqlem8 27337 rplogsumlem1 27395 rpvmasumlem 27398 dchrisumlem3 27402 dchrvmasumlem3 27410 mulog2sumlem2 27446 selberglem2 27457 selberg2lem 27461 pntrlog2bndlem3 27490 pntrlog2bndlem5 27492 pntlemj 27514 ostth2lem2 27545 axpaschlem 28867 smcnlem 30626 htthlem 30846 lnconi 31962 cnlnadjlem7 32002 nnmulge 32662 nexple 32769 logdivsqrle 34641 hgt750lemf 34644 bfplem2 37817 aks4d1p1p7 42062 posbezout 42088 aks6d1c7lem1 42168 fltnltalem 42650 jm2.24nn 42948 areaquad 43205 int-ineq2ndprincd 44182 fmul01lt1lem2 45583 dvbdfbdioolem1 45926 fourierdlem19 46124 fourierdlem39 46144 hsphoidmvle2 46583 hsphoidmvle 46584 hoidmvlelem2 46594 smfmullem1 46789 |
| Copyright terms: Public domain | W3C validator |