![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmdisj2a | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
lsmdisj2a | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcntz.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
2 | lsmcntz.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
4 | lsmcntz.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
6 | lsmcntz.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
8 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
9 | simprl 771 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | |
10 | simprr 773 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑆 ∩ 𝑇) = { 0 }) | |
11 | 1, 3, 5, 7, 8, 9, 10 | lsmdisj2 19715 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) |
12 | 1, 3, 5, 7, 8, 9 | lsmdisj 19714 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
13 | 12 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) |
14 | 11, 13 | jca 511 | . 2 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
15 | incom 4217 | . . . 4 ⊢ ((𝑆 ⊕ 𝑇) ∩ 𝑈) = (𝑈 ∩ (𝑆 ⊕ 𝑇)) | |
16 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
17 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
18 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
19 | incom 4217 | . . . . . 6 ⊢ ((𝑆 ⊕ 𝑈) ∩ 𝑇) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) | |
20 | simprl 771 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) | |
21 | 19, 20 | eqtrid 2787 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
22 | simprr 773 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) | |
23 | 1, 16, 17, 18, 8, 21, 22 | lsmdisj2 19715 | . . . 4 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑈 ∩ (𝑆 ⊕ 𝑇)) = { 0 }) |
24 | 15, 23 | eqtrid 2787 | . . 3 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) |
25 | incom 4217 | . . . 4 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
26 | 1, 18, 16, 17, 8, 20 | lsmdisjr 19717 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑇 ∩ 𝑆) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
27 | 26 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑆) = { 0 }) |
28 | 25, 27 | eqtrid 2787 | . . 3 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑇) = { 0 }) |
29 | 24, 28 | jca 511 | . 2 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) |
30 | 14, 29 | impbida 801 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 {csn 4631 ‘cfv 6563 (class class class)co 7431 0gc0g 17486 SubGrpcsubg 19151 LSSumclsm 19667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-submnd 18810 df-grp 18967 df-minusg 18968 df-subg 19154 df-lsm 19669 |
This theorem is referenced by: lsmdisj3a 19722 |
Copyright terms: Public domain | W3C validator |