| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj2a | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| lsmdisj2a | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcntz.p | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 2 | lsmcntz.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 3 | 2 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 4 | lsmcntz.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 5 | 4 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 6 | lsmcntz.u | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 7 | 6 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 8 | lsmdisj.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 9 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) | |
| 10 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑆 ∩ 𝑇) = { 0 }) | |
| 11 | 1, 3, 5, 7, 8, 9, 10 | lsmdisj2 19668 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) |
| 12 | 1, 3, 5, 7, 8, 9 | lsmdisj 19667 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑆 ∩ 𝑈) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| 13 | 12 | simpld 494 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) |
| 14 | 11, 13 | jca 511 | . 2 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) → ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
| 15 | incom 4189 | . . . 4 ⊢ ((𝑆 ⊕ 𝑇) ∩ 𝑈) = (𝑈 ∩ (𝑆 ⊕ 𝑇)) | |
| 16 | 2 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 17 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 18 | 4 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 19 | incom 4189 | . . . . . 6 ⊢ ((𝑆 ⊕ 𝑈) ∩ 𝑇) = (𝑇 ∩ (𝑆 ⊕ 𝑈)) | |
| 20 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) | |
| 21 | 19, 20 | eqtrid 2781 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
| 22 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) | |
| 23 | 1, 16, 17, 18, 8, 21, 22 | lsmdisj2 19668 | . . . 4 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑈 ∩ (𝑆 ⊕ 𝑇)) = { 0 }) |
| 24 | 15, 23 | eqtrid 2781 | . . 3 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 }) |
| 25 | incom 4189 | . . . 4 ⊢ (𝑆 ∩ 𝑇) = (𝑇 ∩ 𝑆) | |
| 26 | 1, 18, 16, 17, 8, 20 | lsmdisjr 19670 | . . . . 5 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑇 ∩ 𝑆) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| 27 | 26 | simpld 494 | . . . 4 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑆) = { 0 }) |
| 28 | 25, 27 | eqtrid 2781 | . . 3 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑇) = { 0 }) |
| 29 | 24, 28 | jca 511 | . 2 ⊢ ((𝜑 ∧ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 })) |
| 30 | 14, 29 | impbida 800 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆 ∩ 𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 {csn 4606 ‘cfv 6541 (class class class)co 7413 0gc0g 17455 SubGrpcsubg 19107 LSSumclsm 19620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 ax-pre-mulgt0 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-sub 11476 df-neg 11477 df-nn 12249 df-2 12311 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17230 df-ress 17253 df-plusg 17286 df-0g 17457 df-mgm 18622 df-sgrp 18701 df-mnd 18717 df-submnd 18766 df-grp 18923 df-minusg 18924 df-subg 19110 df-lsm 19622 |
| This theorem is referenced by: lsmdisj3a 19675 |
| Copyright terms: Public domain | W3C validator |