MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2a Structured version   Visualization version   GIF version

Theorem lsmdisj2a 19601
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
Assertion
Ref Expression
lsmdisj2a (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })))

Proof of Theorem lsmdisj2a
StepHypRef Expression
1 lsmcntz.p . . . 4 = (LSSum‘𝐺)
2 lsmcntz.s . . . . 5 (𝜑𝑆 ∈ (SubGrp‘𝐺))
32adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺))
4 lsmcntz.t . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝐺))
54adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺))
6 lsmcntz.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺))
8 lsmdisj.o . . . 4 0 = (0g𝐺)
9 simprl 770 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
10 simprr 772 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑆𝑇) = { 0 })
111, 3, 5, 7, 8, 9, 10lsmdisj2 19596 . . 3 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
121, 3, 5, 7, 8, 9lsmdisj 19595 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑆𝑈) = { 0 } ∧ (𝑇𝑈) = { 0 }))
1312simpld 494 . . 3 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑆𝑈) = { 0 })
1411, 13jca 511 . 2 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 }))
15 incom 4158 . . . 4 ((𝑆 𝑇) ∩ 𝑈) = (𝑈 ∩ (𝑆 𝑇))
162adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺))
176adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺))
184adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺))
19 incom 4158 . . . . . 6 ((𝑆 𝑈) ∩ 𝑇) = (𝑇 ∩ (𝑆 𝑈))
20 simprl 770 . . . . . 6 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
2119, 20eqtrid 2780 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
22 simprr 772 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑆𝑈) = { 0 })
231, 16, 17, 18, 8, 21, 22lsmdisj2 19596 . . . 4 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑈 ∩ (𝑆 𝑇)) = { 0 })
2415, 23eqtrid 2780 . . 3 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
25 incom 4158 . . . 4 (𝑆𝑇) = (𝑇𝑆)
261, 18, 16, 17, 8, 20lsmdisjr 19598 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑇𝑆) = { 0 } ∧ (𝑇𝑈) = { 0 }))
2726simpld 494 . . . 4 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑇𝑆) = { 0 })
2825, 27eqtrid 2780 . . 3 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑆𝑇) = { 0 })
2924, 28jca 511 . 2 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }))
3014, 29impbida 800 1 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3897  {csn 4575  cfv 6486  (class class class)co 7352  0gc0g 17345  SubGrpcsubg 19035  LSSumclsm 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-submnd 18694  df-grp 18851  df-minusg 18852  df-subg 19038  df-lsm 19550
This theorem is referenced by:  lsmdisj3a  19603
  Copyright terms: Public domain W3C validator