MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsmdisj2a Structured version   Visualization version   GIF version

Theorem lsmdisj2a 19673
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
lsmcntz.p = (LSSum‘𝐺)
lsmcntz.s (𝜑𝑆 ∈ (SubGrp‘𝐺))
lsmcntz.t (𝜑𝑇 ∈ (SubGrp‘𝐺))
lsmcntz.u (𝜑𝑈 ∈ (SubGrp‘𝐺))
lsmdisj.o 0 = (0g𝐺)
Assertion
Ref Expression
lsmdisj2a (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })))

Proof of Theorem lsmdisj2a
StepHypRef Expression
1 lsmcntz.p . . . 4 = (LSSum‘𝐺)
2 lsmcntz.s . . . . 5 (𝜑𝑆 ∈ (SubGrp‘𝐺))
32adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺))
4 lsmcntz.t . . . . 5 (𝜑𝑇 ∈ (SubGrp‘𝐺))
54adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺))
6 lsmcntz.u . . . . 5 (𝜑𝑈 ∈ (SubGrp‘𝐺))
76adantr 480 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺))
8 lsmdisj.o . . . 4 0 = (0g𝐺)
9 simprl 770 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
10 simprr 772 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑆𝑇) = { 0 })
111, 3, 5, 7, 8, 9, 10lsmdisj2 19668 . . 3 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
121, 3, 5, 7, 8, 9lsmdisj 19667 . . . 4 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑆𝑈) = { 0 } ∧ (𝑇𝑈) = { 0 }))
1312simpld 494 . . 3 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → (𝑆𝑈) = { 0 })
1411, 13jca 511 . 2 ((𝜑 ∧ (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 })) → ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 }))
15 incom 4189 . . . 4 ((𝑆 𝑇) ∩ 𝑈) = (𝑈 ∩ (𝑆 𝑇))
162adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺))
176adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺))
184adantr 480 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺))
19 incom 4189 . . . . . 6 ((𝑆 𝑈) ∩ 𝑇) = (𝑇 ∩ (𝑆 𝑈))
20 simprl 770 . . . . . 6 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑇 ∩ (𝑆 𝑈)) = { 0 })
2119, 20eqtrid 2781 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑆 𝑈) ∩ 𝑇) = { 0 })
22 simprr 772 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑆𝑈) = { 0 })
231, 16, 17, 18, 8, 21, 22lsmdisj2 19668 . . . 4 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑈 ∩ (𝑆 𝑇)) = { 0 })
2415, 23eqtrid 2781 . . 3 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑆 𝑇) ∩ 𝑈) = { 0 })
25 incom 4189 . . . 4 (𝑆𝑇) = (𝑇𝑆)
261, 18, 16, 17, 8, 20lsmdisjr 19670 . . . . 5 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → ((𝑇𝑆) = { 0 } ∧ (𝑇𝑈) = { 0 }))
2726simpld 494 . . . 4 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑇𝑆) = { 0 })
2825, 27eqtrid 2781 . . 3 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (𝑆𝑇) = { 0 })
2924, 28jca 511 . 2 ((𝜑 ∧ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })) → (((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }))
3014, 29impbida 800 1 (𝜑 → ((((𝑆 𝑇) ∩ 𝑈) = { 0 } ∧ (𝑆𝑇) = { 0 }) ↔ ((𝑇 ∩ (𝑆 𝑈)) = { 0 } ∧ (𝑆𝑈) = { 0 })))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3930  {csn 4606  cfv 6541  (class class class)co 7413  0gc0g 17455  SubGrpcsubg 19107  LSSumclsm 19620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17230  df-ress 17253  df-plusg 17286  df-0g 17457  df-mgm 18622  df-sgrp 18701  df-mnd 18717  df-submnd 18766  df-grp 18923  df-minusg 18924  df-subg 19110  df-lsm 19622
This theorem is referenced by:  lsmdisj3a  19675
  Copyright terms: Public domain W3C validator