| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lsmdisj2b | Structured version Visualization version GIF version | ||
| Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
| lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
| lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
| lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| lsmdisj2b | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4159 | . . . 4 ⊢ (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) | |
| 2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
| 4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 5 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 7 | lsmcntz.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 9 | lsmdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 10 | incom 4159 | . . . . . 6 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
| 11 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | |
| 12 | 10, 11 | eqtrid 2778 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) |
| 13 | simprr 772 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) | |
| 14 | 2, 4, 6, 8, 9, 12, 13 | lsmdisj2r 19598 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑇 ⊕ 𝑈) ∩ 𝑆) = { 0 }) |
| 15 | 1, 14 | eqtrid 2778 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
| 16 | incom 4159 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
| 17 | 2, 6, 8, 4, 9, 11 | lsmdisj 19594 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑈 ∩ 𝑇) = { 0 })) |
| 18 | 17 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑈 ∩ 𝑇) = { 0 }) |
| 19 | 16, 18 | eqtrid 2778 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) |
| 20 | 15, 19 | jca 511 | . 2 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
| 21 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
| 22 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
| 23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
| 24 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
| 25 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) | |
| 26 | 2, 21, 22, 23, 9, 24, 25 | lsmdisj2r 19598 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
| 27 | 2, 21, 22, 23, 9, 24 | lsmdisjr 19597 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
| 28 | 27 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) |
| 29 | 26, 28 | jca 511 | . 2 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
| 30 | 20, 29 | impbida 800 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∩ cin 3901 {csn 4576 ‘cfv 6481 (class class class)co 7346 0gc0g 17343 SubGrpcsubg 19033 LSSumclsm 19547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-subg 19036 df-oppg 19259 df-lsm 19549 |
| This theorem is referenced by: lsmdisj3b 19603 |
| Copyright terms: Public domain | W3C validator |