![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lsmdisj2b | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
lsmdisj2b | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4202 | . . . 4 ⊢ (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) | |
2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
5 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
7 | lsmcntz.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
9 | lsmdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
10 | incom 4202 | . . . . . 6 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
11 | simprl 768 | . . . . . 6 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | |
12 | 10, 11 | eqtrid 2783 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) |
13 | simprr 770 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) | |
14 | 2, 4, 6, 8, 9, 12, 13 | lsmdisj2r 19595 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑇 ⊕ 𝑈) ∩ 𝑆) = { 0 }) |
15 | 1, 14 | eqtrid 2783 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
16 | incom 4202 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
17 | 2, 6, 8, 4, 9, 11 | lsmdisj 19591 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑈 ∩ 𝑇) = { 0 })) |
18 | 17 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑈 ∩ 𝑇) = { 0 }) |
19 | 16, 18 | eqtrid 2783 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) |
20 | 15, 19 | jca 511 | . 2 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
21 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
22 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
24 | simprl 768 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
25 | simprr 770 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) | |
26 | 2, 21, 22, 23, 9, 24, 25 | lsmdisj2r 19595 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
27 | 2, 21, 22, 23, 9, 24 | lsmdisjr 19594 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
28 | 27 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) |
29 | 26, 28 | jca 511 | . 2 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
30 | 20, 29 | impbida 798 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∩ cin 3948 {csn 4629 ‘cfv 6544 (class class class)co 7412 0gc0g 17390 SubGrpcsubg 19037 LSSumclsm 19544 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-tpos 8214 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-grp 18859 df-minusg 18860 df-subg 19040 df-oppg 19252 df-lsm 19546 |
This theorem is referenced by: lsmdisj3b 19600 |
Copyright terms: Public domain | W3C validator |