Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsmdisj2b | Structured version Visualization version GIF version |
Description: Association of the disjointness constraint in a subgroup sum. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
lsmcntz.p | ⊢ ⊕ = (LSSum‘𝐺) |
lsmcntz.s | ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) |
lsmcntz.t | ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) |
lsmcntz.u | ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) |
lsmdisj.o | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
lsmdisj2b | ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 4131 | . . . 4 ⊢ (𝑆 ∩ (𝑇 ⊕ 𝑈)) = ((𝑇 ⊕ 𝑈) ∩ 𝑆) | |
2 | lsmcntz.p | . . . . 5 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | lsmcntz.t | . . . . . 6 ⊢ (𝜑 → 𝑇 ∈ (SubGrp‘𝐺)) | |
4 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
5 | lsmcntz.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ (SubGrp‘𝐺)) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
7 | lsmcntz.u | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ (SubGrp‘𝐺)) | |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
9 | lsmdisj.o | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
10 | incom 4131 | . . . . . 6 ⊢ (𝑇 ∩ (𝑆 ⊕ 𝑈)) = ((𝑆 ⊕ 𝑈) ∩ 𝑇) | |
11 | simprl 767 | . . . . . 6 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) | |
12 | 10, 11 | eqtrid 2790 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ (𝑆 ⊕ 𝑈)) = { 0 }) |
13 | simprr 769 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) | |
14 | 2, 4, 6, 8, 9, 12, 13 | lsmdisj2r 19206 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑇 ⊕ 𝑈) ∩ 𝑆) = { 0 }) |
15 | 1, 14 | eqtrid 2790 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) |
16 | incom 4131 | . . . 4 ⊢ (𝑇 ∩ 𝑈) = (𝑈 ∩ 𝑇) | |
17 | 2, 6, 8, 4, 9, 11 | lsmdisj 19202 | . . . . 5 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑈 ∩ 𝑇) = { 0 })) |
18 | 17 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑈 ∩ 𝑇) = { 0 }) |
19 | 16, 18 | eqtrid 2790 | . . 3 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) |
20 | 15, 19 | jca 511 | . 2 ⊢ ((𝜑 ∧ (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) |
21 | 5 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑆 ∈ (SubGrp‘𝐺)) |
22 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑇 ∈ (SubGrp‘𝐺)) |
23 | 7 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → 𝑈 ∈ (SubGrp‘𝐺)) |
24 | simprl 767 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 }) | |
25 | simprr 769 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑇 ∩ 𝑈) = { 0 }) | |
26 | 2, 21, 22, 23, 9, 24, 25 | lsmdisj2r 19206 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 }) |
27 | 2, 21, 22, 23, 9, 24 | lsmdisjr 19205 | . . . 4 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → ((𝑆 ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
28 | 27 | simprd 495 | . . 3 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (𝑆 ∩ 𝑈) = { 0 }) |
29 | 26, 28 | jca 511 | . 2 ⊢ ((𝜑 ∧ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 })) → (((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 })) |
30 | 20, 29 | impbida 797 | 1 ⊢ (𝜑 → ((((𝑆 ⊕ 𝑈) ∩ 𝑇) = { 0 } ∧ (𝑆 ∩ 𝑈) = { 0 }) ↔ ((𝑆 ∩ (𝑇 ⊕ 𝑈)) = { 0 } ∧ (𝑇 ∩ 𝑈) = { 0 }))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∩ cin 3882 {csn 4558 ‘cfv 6418 (class class class)co 7255 0gc0g 17067 SubGrpcsubg 18664 LSSumclsm 19154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-subg 18667 df-oppg 18865 df-lsm 19156 |
This theorem is referenced by: lsmdisj3b 19211 |
Copyright terms: Public domain | W3C validator |