MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem7 Structured version   Visualization version   GIF version

Theorem m2detleiblem7 20838
Description: Lemma 7 for m2detleib 20842. (Contributed by AV, 20-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
m2detleiblem1.i 𝐼 = (invg𝑅)
m2detleiblem1.t · = (.r𝑅)
m2detleiblem1.m = (-g𝑅)
Assertion
Ref Expression
m2detleiblem7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋 𝑍))

Proof of Theorem m2detleiblem7
StepHypRef Expression
1 eqid 2778 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 m2detleiblem1.t . . . . 5 · = (.r𝑅)
3 m2detleiblem1.o . . . . 5 1 = (1r𝑅)
4 m2detleiblem1.i . . . . 5 𝐼 = (invg𝑅)
5 simpl 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
6 simpr 479 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑍 ∈ (Base‘𝑅))
71, 2, 3, 4, 5, 6ringnegl 18981 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼1 ) · 𝑍) = (𝐼𝑍))
873adant2 1122 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼1 ) · 𝑍) = (𝐼𝑍))
98oveq2d 6938 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋(+g𝑅)(𝐼𝑍)))
10 eqid 2778 . . . 4 (+g𝑅) = (+g𝑅)
11 m2detleiblem1.m . . . 4 = (-g𝑅)
121, 10, 4, 11grpsubval 17852 . . 3 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 𝑍) = (𝑋(+g𝑅)(𝐼𝑍)))
13123adant1 1121 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 𝑍) = (𝑋(+g𝑅)(𝐼𝑍)))
149, 13eqtr4d 2817 1 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  {cpr 4400  cfv 6135  (class class class)co 6922  1c1 10273  2c2 11430  Basecbs 16255  +gcplusg 16338  .rcmulr 16339  invgcminusg 17810  -gcsg 17811  SymGrpcsymg 18180  pmSgncpsgn 18292  1rcur 18888  Ringcrg 18934  ℤRHomczrh 20244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-om 7344  df-1st 7445  df-2nd 7446  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-er 8026  df-en 8242  df-dom 8243  df-sdom 8244  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-nn 11375  df-2 11438  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-plusg 16351  df-0g 16488  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mgp 18877  df-ur 18889  df-ring 18936
This theorem is referenced by:  m2detleib  20842
  Copyright terms: Public domain W3C validator