Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  m2detleiblem7 Structured version   Visualization version   GIF version

Theorem m2detleiblem7 21341
 Description: Lemma 7 for m2detleib 21345. (Contributed by AV, 20-Dec-2018.)
Hypotheses
Ref Expression
m2detleiblem1.n 𝑁 = {1, 2}
m2detleiblem1.p 𝑃 = (Base‘(SymGrp‘𝑁))
m2detleiblem1.y 𝑌 = (ℤRHom‘𝑅)
m2detleiblem1.s 𝑆 = (pmSgn‘𝑁)
m2detleiblem1.o 1 = (1r𝑅)
m2detleiblem1.i 𝐼 = (invg𝑅)
m2detleiblem1.t · = (.r𝑅)
m2detleiblem1.m = (-g𝑅)
Assertion
Ref Expression
m2detleiblem7 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋 𝑍))

Proof of Theorem m2detleiblem7
StepHypRef Expression
1 eqid 2758 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
2 m2detleiblem1.t . . . . 5 · = (.r𝑅)
3 m2detleiblem1.o . . . . 5 1 = (1r𝑅)
4 m2detleiblem1.i . . . . 5 𝐼 = (invg𝑅)
5 simpl 486 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
6 simpr 488 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑍 ∈ (Base‘𝑅))
71, 2, 3, 4, 5, 6ringnegl 19429 . . . 4 ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼1 ) · 𝑍) = (𝐼𝑍))
873adant2 1128 . . 3 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼1 ) · 𝑍) = (𝐼𝑍))
98oveq2d 7172 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋(+g𝑅)(𝐼𝑍)))
10 eqid 2758 . . . 4 (+g𝑅) = (+g𝑅)
11 m2detleiblem1.m . . . 4 = (-g𝑅)
121, 10, 4, 11grpsubval 18230 . . 3 ((𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 𝑍) = (𝑋(+g𝑅)(𝐼𝑍)))
13123adant1 1127 . 2 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 𝑍) = (𝑋(+g𝑅)(𝐼𝑍)))
149, 13eqtr4d 2796 1 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g𝑅)((𝐼1 ) · 𝑍)) = (𝑋 𝑍))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  {cpr 4527  ‘cfv 6340  (class class class)co 7156  1c1 10589  2c2 11742  Basecbs 16555  +gcplusg 16637  .rcmulr 16638  invgcminusg 18184  -gcsg 18185  SymGrpcsymg 18576  pmSgncpsgn 18698  1rcur 19333  Ringcrg 19379  ℤRHomczrh 20283 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4888  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7586  df-1st 7699  df-2nd 7700  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-nn 11688  df-2 11750  df-ndx 16558  df-slot 16559  df-base 16561  df-sets 16562  df-plusg 16650  df-0g 16787  df-mgm 17932  df-sgrp 17981  df-mnd 17992  df-grp 18186  df-minusg 18187  df-sbg 18188  df-mgp 19322  df-ur 19334  df-ring 19381 This theorem is referenced by:  m2detleib  21345
 Copyright terms: Public domain W3C validator