| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > m2detleiblem7 | Structured version Visualization version GIF version | ||
| Description: Lemma 7 for m2detleib 22539. (Contributed by AV, 20-Dec-2018.) |
| Ref | Expression |
|---|---|
| m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
| m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
| m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
| m2detleiblem1.t | ⊢ · = (.r‘𝑅) |
| m2detleiblem1.m | ⊢ − = (-g‘𝑅) |
| Ref | Expression |
|---|---|
| m2detleiblem7 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 2 | m2detleiblem1.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 3 | m2detleiblem1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 4 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
| 5 | simpl 482 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
| 6 | simpr 484 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑍 ∈ (Base‘𝑅)) | |
| 7 | 1, 2, 3, 4, 5, 6 | ringnegl 20213 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼‘ 1 ) · 𝑍) = (𝐼‘𝑍)) |
| 8 | 7 | 3adant2 1131 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼‘ 1 ) · 𝑍) = (𝐼‘𝑍)) |
| 9 | 8 | oveq2d 7357 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
| 10 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | m2detleiblem1.m | . . . 4 ⊢ − = (-g‘𝑅) | |
| 12 | 1, 10, 4, 11 | grpsubval 18890 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 − 𝑍) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
| 13 | 12 | 3adant1 1130 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 − 𝑍) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
| 14 | 9, 13 | eqtr4d 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 {cpr 4576 ‘cfv 6477 (class class class)co 7341 1c1 10999 2c2 12172 Basecbs 17112 +gcplusg 17153 .rcmulr 17154 invgcminusg 18839 -gcsg 18840 SymGrpcsymg 19274 pmSgncpsgn 19394 1rcur 20092 Ringcrg 20144 ℤRHomczrh 21429 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-0g 17337 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-grp 18841 df-minusg 18842 df-sbg 18843 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 |
| This theorem is referenced by: m2detleib 22539 |
| Copyright terms: Public domain | W3C validator |