![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > m2detleiblem7 | Structured version Visualization version GIF version |
Description: Lemma 7 for m2detleib 20805. (Contributed by AV, 20-Dec-2018.) |
Ref | Expression |
---|---|
m2detleiblem1.n | ⊢ 𝑁 = {1, 2} |
m2detleiblem1.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
m2detleiblem1.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
m2detleiblem1.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
m2detleiblem1.o | ⊢ 1 = (1r‘𝑅) |
m2detleiblem1.i | ⊢ 𝐼 = (invg‘𝑅) |
m2detleiblem1.t | ⊢ · = (.r‘𝑅) |
m2detleiblem1.m | ⊢ − = (-g‘𝑅) |
Ref | Expression |
---|---|
m2detleiblem7 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2825 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
2 | m2detleiblem1.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
3 | m2detleiblem1.o | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
4 | m2detleiblem1.i | . . . . 5 ⊢ 𝐼 = (invg‘𝑅) | |
5 | simpl 476 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) | |
6 | simpr 479 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → 𝑍 ∈ (Base‘𝑅)) | |
7 | 1, 2, 3, 4, 5, 6 | ringnegl 18948 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼‘ 1 ) · 𝑍) = (𝐼‘𝑍)) |
8 | 7 | 3adant2 1167 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → ((𝐼‘ 1 ) · 𝑍) = (𝐼‘𝑍)) |
9 | 8 | oveq2d 6921 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
10 | eqid 2825 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
11 | m2detleiblem1.m | . . . 4 ⊢ − = (-g‘𝑅) | |
12 | 1, 10, 4, 11 | grpsubval 17819 | . . 3 ⊢ ((𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 − 𝑍) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
13 | 12 | 3adant1 1166 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋 − 𝑍) = (𝑋(+g‘𝑅)(𝐼‘𝑍))) |
14 | 9, 13 | eqtr4d 2864 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑅) ∧ 𝑍 ∈ (Base‘𝑅)) → (𝑋(+g‘𝑅)((𝐼‘ 1 ) · 𝑍)) = (𝑋 − 𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 ∧ w3a 1113 = wceq 1658 ∈ wcel 2166 {cpr 4399 ‘cfv 6123 (class class class)co 6905 1c1 10253 2c2 11406 Basecbs 16222 +gcplusg 16305 .rcmulr 16306 invgcminusg 17777 -gcsg 17778 SymGrpcsymg 18147 pmSgncpsgn 18259 1rcur 18855 Ringcrg 18901 ℤRHomczrh 20208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2391 ax-ext 2803 ax-rep 4994 ax-sep 5005 ax-nul 5013 ax-pow 5065 ax-pr 5127 ax-un 7209 ax-cnex 10308 ax-resscn 10309 ax-1cn 10310 ax-icn 10311 ax-addcl 10312 ax-addrcl 10313 ax-mulcl 10314 ax-mulrcl 10315 ax-mulcom 10316 ax-addass 10317 ax-mulass 10318 ax-distr 10319 ax-i2m1 10320 ax-1ne0 10321 ax-1rid 10322 ax-rnegex 10323 ax-rrecex 10324 ax-cnre 10325 ax-pre-lttri 10326 ax-pre-lttrn 10327 ax-pre-ltadd 10328 ax-pre-mulgt0 10329 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4145 df-if 4307 df-pw 4380 df-sn 4398 df-pr 4400 df-tp 4402 df-op 4404 df-uni 4659 df-iun 4742 df-br 4874 df-opab 4936 df-mpt 4953 df-tr 4976 df-id 5250 df-eprel 5255 df-po 5263 df-so 5264 df-fr 5301 df-we 5303 df-xp 5348 df-rel 5349 df-cnv 5350 df-co 5351 df-dm 5352 df-rn 5353 df-res 5354 df-ima 5355 df-pred 5920 df-ord 5966 df-on 5967 df-lim 5968 df-suc 5969 df-iota 6086 df-fun 6125 df-fn 6126 df-f 6127 df-f1 6128 df-fo 6129 df-f1o 6130 df-fv 6131 df-riota 6866 df-ov 6908 df-oprab 6909 df-mpt2 6910 df-om 7327 df-1st 7428 df-2nd 7429 df-wrecs 7672 df-recs 7734 df-rdg 7772 df-er 8009 df-en 8223 df-dom 8224 df-sdom 8225 df-pnf 10393 df-mnf 10394 df-xr 10395 df-ltxr 10396 df-le 10397 df-sub 10587 df-neg 10588 df-nn 11351 df-2 11414 df-ndx 16225 df-slot 16226 df-base 16228 df-sets 16229 df-plusg 16318 df-0g 16455 df-mgm 17595 df-sgrp 17637 df-mnd 17648 df-grp 17779 df-minusg 17780 df-sbg 17781 df-mgp 18844 df-ur 18856 df-ring 18903 |
This theorem is referenced by: m2detleib 20805 |
Copyright terms: Public domain | W3C validator |